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 In this work, concept of the fashion-MNIST images classification 

constructed on convolutional neural networks is discussed. Whereas, 28×28 

grayscale images of 70,000 fashion products from 10 classes, with 7,000 

images per category, are in the fashion-MNIST dataset. There are 60,000 

images in the training set and 10,000 images in the evaluation set. The data 

has been initially pre-processed for resizing and reducing the noise. Then, 

this data is normalized for ensuring that all the data are on the same scale and 

this usually improves the performance. After normalizing the data, it is 

augmented where one image will be in three forms of output. The first output 

image is obtained by rotating the actual one; the second output image is 

obtained as acute angle image; and the third is obtained as tilt image. The 

new data set is of 180,000 images for training phase and 30,000 images for 

the testing phase. Finally, data is sent to training process as input for training 

model of the pre-convolution network. The pre-convolution neural network 

with the five layered convoluted deep neural network and do the training 

with the augmented data, The performance of the proposed system shows 

94% accuracy where it was 93% in VGG16 and 92% in AlexNetnetworks. 
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1. INTRODUCTION 

Nowadays, statistical and machine learning techniques undergoes to some of the reasonable 

techniques to withstand certain constraints in the estimation of high-dimensional data. The previous setbacks 

can be solved by reducing the number of input variables before applying the data mining techniques [1]. 

Therefore, in machine learning the dimensionality reduction techniques analyzed in two different ways; 

basically, the required variables was extracted from the primary dataset, this techniques was formulated as 

feature selection. Otherwise; by exploring the redundant input data and eliminating the data to form a new set 

of smaller input variables dataset. Each and every column is the combination of the input variables, and the 

information is same as the input variables. These techniques were depicted as dimensionality reduction. The 

above process is exploration techniques in statistical modeling [2]. 

Han Xiao et al. [3] were determines the fashion-MNIST images to be the grayscale images of 28×28 

with 70,000 fashion products commencing in 10 classes, through 7,000 images for each class. The first 

60,000 images for the training, along with the final 10,000 images for the test phase. This original MNIST 

dataset remains highly remarkable for machine learning techniques that could be served by the alteration of 

direct drop-in. the similar image size has been shared along with their design for splitting the training and 

testing sets. Several researches were introduced for the fashion-MNIST images data set classification. 

ArildNøkland et al. [4] were explains the training of the layer wise, which could arrive at up to date ranges in 
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image datasets. Hirata et al. [5] were proposed a model comprised of one base convolution neural network 

(CNN) along with multiple fully connected sub networks (FCSNs) known to be EnsNet. This model creates 

the group of feature-maps through the final layer of convolution through the CNN base that has been 

classified and the channels comprised within the disjoint subsets. In FCSNs, the subsets have been allotted 

with the disjoint subsets. Each subset of the FCSNs is prepared autonomously with the goal that it can 

anticipate the class name from the subset of the element maps relegated to it. The yield of the general model 

was controlled by the dominant part vote of the base CNN and the FCSNs. Trial results utilizing the MNIST, 

fashion-MNIST and CIFAR-10 datasets show that the anticipated technique additionally enhances the 

demonstration of CNNs. Specifically, an EnsNet accomplishes the best in class mistake pace of 0.16% on 

MNIST. The effect on the fashion-MNIST dataset of various hyper-parameter optimization (HPO) strategies 

and regularization procedures with deep neural organizations was studied in [6]. As profound learning 

requires a heap of information, the inadequacy of picture tests can be grow through different information 

expansion techniques like rotation, cropping, shifting and flipping. Therefore outcomes of the validated 

results show great outcomes on this new benchmarking dataset. A cutting-edge model for grouping of fashion 

article pictures was proposed in [7]. The authors prepared three convolutional neural organizations to 

characterize the pictures in the fashion-MNIST dataset. The model shows amazing outcomes on the 

benchmark dataset. LeNet-5 designed network was applied on the fashion-MNIST datasetto direct an 

extensive correlation between various CNN structures, (for example, VGG16) on different garments datasets, 

(for example, Image Net). For instance, a custom VGG 16 CNN type with stacked convolution layers 

obtained 93.07 percent accuracy [8]. Various models of CNN were introduced to distinguish which of them 

presents better exactness in characterization and ID. LeNet-5, AlexNet, VGG-16 and ResNet were the deep 

learning architectures. The tensor stream was used to construct the separation work planning period. 

The initial segment of the work was centered on a similar investigation of various CNNs for a 

similar informational index to classify product images. The traditional Alex Net CNN style with stacked 

convolution layers obtained 92.34 percent accuracy [9]. Deep learning architectures on basis of neural 

network were trained to characterize pictures on standard fashion-MNIST and CIFAR-10 dataset. The 

different CNN-based arrangement design and RNN-based characterization engineering were prepared just as 

tried on those standard datasets. In the case of group classification, either training from scratch or fine tuning 

is choices for researchers. Classification based on pre-training obtained a performance value of around 88 

percent [10]. An assessment of preparing size effect on approval exactness for an upgraded CNN was 

presented in [11]. The authors were utilized Amazon's AI environment to prepare and test 648 models to 

locate the ideal hyper parameters to apply a CNN towards the fashion-MNIST dataset to get 91.08 percent 

accuracy [12]. 

Different CNN activation functions were tested for fashion-MNIST image classification in [13]. 

This data set was also tested based on Long Short-Term memory network which obtained accuracy of 

88.26% in [14]. Moreover, it was examined based on histogram of oriented gradient and multiclass support 

vector machine in [15]. It was showed 86.53% accuracy. The fashion-MNIST data set was modified in [16] 

and a part of it was used in [17] to find the optimal CNN network. It was found that the use of 40% of the 

data obtained 90% validation accuracy. A. Ferreira et al [18], the CNN was used to classify the granite tiles 

in several conditions. It was also used in [19] for person objects wearing detection such as, hat, shoes and 

bags. Changing the hyperparameters and filter size of the network leads to a higher performance in [20]. E. 

Dufourq et al [21], the authors proposed an evolutionary deep networks algorithm that includes deep network 

and genetic algorithm strengths for image classification. The obtained results were good even in using one 

GPU. 

It is clear that from the above literature, in the fashion domain databases were not of enough size 

and the obtained accurccy still below the requirments in several applications. Therefor; the main contribution 

of this work is to make a good benchmark dataset with all of MNIST's accessibility, namely its 

straightforward encoding, permissive license and its small size. This is attained by increasing the number of 

images with three image types. The first one is by rotating the image, the second one is obtained as acute 

angle image, and the third one is the shift image. This new augmented data was used as input in training 

model of pre-convolution neural network. Moreover, our CNN is enhanced by adding third layer to the 

convolution layers and the max pooling is introduced for all of them. The remaining sections are 

systematized as follows. Section 2 presents a brief history of neural networks with its components and the 

used metrics in performance analyzing. Section 3 illustrates the proposed architecture and the standard data 

set with its augmentation. In section 4 the proposed CNN with pre-convolution is discussed. In section 5 the 

used metrics in performance analysis is illustrated with the obtained simulation results. In section 6 the 

relevant conclusions is discussed. 
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2. CONVOLUTIONAL NEURAL NETWORK 

Convolutional neural network is a deep learning model based on neural network. It extensively well 

demonstrated techniques to utilize the image classification and the object detection. It incorporates [22] with 

three main layers; convolutional (Conv) layer, pooling, and fully-connected (FC) layers. The convolutional 

layer includes filter, stride, and padding [23]. The CNN main structure is illustrated in Figure 1.  

− Convolution layer-the input image is resizing to the CNN model of standard size, i.e., 3×224×224. The 

convolution is a stag with a series of mathematical operation; it executes by convoluting sliding kernel 

matrix over the input matrix to extract the features and maps it to the consecutive layers. The outcomes 

are cumulated to get the feature matrix.  

− Pooling layer-pooling layer is the consecutive layer of the convolution and it is used to reduce the spatial 

domain of the representation and the computation in the network [24, 25]. The max pooling usually the 

size of the pooling kernel which is 2×2 and the stride is 2.  

− Fully connected layers: These layers are simulated in CNN with the help of convolution. The format of its 

size is n1× n2, where n1 is a triplet (7×7×512) output tensor and n2 is an integer output tensor.  

− Dropout: It generally used to remove the over fitting in the input. It is a technique to enhance convolution 

of deep learning algorithm. It assigns weights to the linked nodes in the network.  

− Softmax: The deep learning model followed by a stack of layer where the convolution layer is 

subsequently followed by a ReLU layer in CNN. The nonlinearity in CNN model is determined by a 

ReLU layers. 
 

 

 
 

Figure-1 Architecture of convolutional neural network 

 

 

3. PROPOSED ARCHITECTURE AND DATA SET 

In this paper, the dataset was taken from fashion-MNIST data as input for both training and testing phases. 

First the input data has been preprocessed for resizing the image and to filter out the noise. This filtered data was 

augmented, where the image has been rotated, shifted and tilted to obtain 3 various sets of input. The images were 

sent to augmented data generator to obtain the training set of 60,000 images *3 and the testing set of 10,000 

images*3. Then, the generated data set was pre-convoluted using CNN with its softmax. Its output is used as the 

trained data, whereas the tested output is compared with the trained data and then the prediction process takes place. 

The output was the 10-classes output. Finally, the accuracy was measured from this classified output. Figure 2 

shows our proposed architecture. 
 

 

 
 

Figure 2. The proposed architecture 
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4. PROPOSED CNN WITH PRE-CONVOLUTION 

The initial strategy in neural network is focused in accumulating the process of the data. The input 

data dimension looks equivalent to the 2D image to be used in CNN pre-convolution. Pre-convolution is used 

becauase deep convolutional neural network models make days or even weeks to train on very large datasets, 

a way to short-cut this process is to re-use the convluted trained model weights that were designed for 

standard convolution. The CNN has been widely applied for image recognition along with pattern detection 

and image classification. The image is measured by pixels of the matrix based on it is shape. The distant 

training in pre-convolution CNN is utilized in image detecting and classification. CNN is a convolution 

network where its operation of convolution is generally carried out through the input I and the kernel K 

generates output which utilized in getting the knowledge of shapes modification. The sum of weight has been 

convoluted as sliding window through the entire image. The overall convolution process is to convert the 

image through a weighted matrix to become another image of the similar size and convention dependent. 

Moreover, the operation of convolution is to extract the feature map. In extraction of image characteristics, 

the first layer used is the convolution layer. The mathematical function needs multiple inputs; two input 

namely image matrix and filter or kernel as shown in (1) [9]. 

 

S (i, j) = (I ∗ K)(i ∗ j) = ∑ ∑ 𝐼(𝑚, 𝑛) 𝐾 (𝑖 − 𝑚, 𝑗 − 𝑛)
𝑛𝑚

 (1) 

 

For 3*3 kernel, (1) becomes, 

 

S (i, j) = (I ∗ K)(i ∗ j) = ∑ ∑ 𝐼 (𝑖 − 𝑚, 𝑗 − 𝑛)𝐾 (𝑚, 𝑛)
3

𝑛=1

3

𝑚=1
 (2) 

 

A non-linear activation function is functional to the input neurons and it is multiplied with dot product of (2) 

in the next phase. The result will be x=max (0,x) and the operation is, 

 

𝐴(𝑖, 𝑗) = {
0,

𝑆(𝑖, 𝑗)
 
𝑖𝑓 (𝑖, 𝑗) < 0

𝑖𝑓 (𝑖, 𝑗) ≥ 0
 (3) 

 

In convolution, the computation part has been given with the same signals also by using this process 

the image has been identified and classified. The CNN has multiple convolution layers which this means 

many altered convolutions have been generated. For calculation the matrix weight has been used and finally 

the tensor forms of 5x5xn, where n is indicated as convolution numbers of CNN is obtained. The proposed 

CNN is a pre-convoluted neural network, and therefore the function of distance is trained for evaluating 

identities among the fashion images. Semantic noise problem has been managed with optimization using 

CNN. The fashion images calculating are evaluated using CNN in classification obtains the optimal accuracy. 

The pre-convolution and fine tuning has been done in preparation of distance function that has been assisted 

with the performance. 

The proposed CNN model has five network models that process on datasets of three convolutions 

discussed above is shown in Figure 3. Initially the network model 1 will have single 128 filter layers. Its 

kernel size is 3*3. Then ReLU layer activated and process the convolution. Next for maxpooling 2*2 kernel 

size is applied. Their dropout will be 20% that is utilized to prevent overfitting. At the end, computation of 

loss function is done through implemented the softmax layer.  

The network model 2 consists of 32 and 64 filters with 2 convolutional layers correspondingly. In 

both layers they use 3*3 size for kernel. The activation of ReLU has been utilized similar to the initial 

network model for every layer. For the network model 2 the kernel size for maxpoolingused of 2*2 in every 

layer. The dropout is 20% is used for the first layer and 25% of dropout has been utilized in layer 2 in 

prevention of over fit. The loss function has been evaluated by the softmax which is deployed at the end. 

Network model 3 consist of 32,64, and 128 filters for three convolution layers correspondingly. Layer1 uses 

5*5 as kernel size. Layer 2 and layer 3 uses 3*3 kernel size. All three layers is implemented in ReLU 

Activation. After layer 1 max pooling is functioned as Kernel size 3*3 and after layer 2 and 3 the maxpooling 

is implemented as 2*2 kernel size. After implementation of layer 1 and 2 there is 25% of dropout, the 

dropout of 25% is taken from leyars 1and 2. The dropout of 20% is taken from leyar 3 to reduce the 

overfitting. Finally the loss functionis calculated best on fully connected fully network. 

The network model 4 and 5 are on the basis of the pre-convoluted CNN. In general CNN are 

unstable sometimes, eventually during gradient propagation by the extended window that might generate 

gradient desertion and over burst. Hence the design developed uses pre-convolution network model. A 

sequential model is used by the network model 4 which remains stack at linear layer. On 150 batch size the 
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model has been tested. Layer 1 is 128-unit pre-convolution layer and reverts back as series. This has to 

ensure that the series has been received at next convolution layer and not indiscriminately discretion of data. 

Therefore, the final layer of softmax was enabled by a fully connected layer and equivalent neurons were it 

explores the different classes. The network model 5 is same as network model 4 since the network layer 5 

also consist of stack of linear layers. Layer 1 is a layer of pre convolution that has 300 units of memory in 

spot of previous network models that have 128 units and revert back as series. In layer 2 there are 300 units. 

The dropout layer is implemented to prevent the overfitting of the model after pre-convolution layer 2. At the 

end, the last layer has softmax activation with fully connected layer. 

 

 

 
 

Figure 3. Implementation architecture for proposed pre-convolution CNN 

 

 

5. SIMULATION RESULTS 

 The performance analysis of the proposed method is illustrated below. The parameter to be 

considered for evaluation is accuracy, precision, recall, and F1 score. Confusion matrix is used to calculate 

the various performance metrics. 

‒ Accuracy: It shows correctly the classified instances percentage in course of classification. It is evaluated 

as in (4). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑎𝑡𝑒 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
∗ 100 (4) 

 

‒ Precision: It gives the proportion of data that transmit to the network, actually had intrusion. The 

predicted positives (Network predicted as intrusion is TP and FP) and the network actually having an 

intrusion are TP. This is used to measure the quality and exactness of the classifier as shown in (5). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (5) 

 

‒ Recall: Recall is the ratio of real positives which are correct the predicted positive and it is defined as in 

(6).  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (6) 
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‒ F1 score: F1 score is determined from the precision and recall of the test values as in (7). The F1 score is 

an indicator of the test's accuracy to assess the binary classification. Where the precision is the number of 

true positive outcomes, divided by the number of all the positive outcomes, the recall is the number of true 

positive outcomes, divided by the number of all the positive samples that should have been detected. 

 

𝐹1 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
2𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (7) 

 

Table 1 illustrates the observation of classification analysis of ten classes of fashion-MNIST dataset. 

The performance measures of various techniques of VGG16 26M parameters, 3 Conv+BN+pooling, 2 

Conv+pooling is compared with the proposed techniques Proposed_PreConv. It shows the comparison of the 

performance in precision, recall and F1-score. It has been analysed from the actual and predicted value from 

the objective of ten classes in confusion matrix. The obtained precision, recall, F1-score, and accuracy are 

compared in Figures 4-7 respectively. In Figure 4, the Proposed_PreConv achieves precision with supreme 

percentage in all the ten classes than the existing techniques. Figure 5 and 6 depicts very clearly comparison 

for various techniques in terms of recall and F1-score. 

 

 

Table 1. Comparison of performance of Proposed_PreConv system and existing algorithm 
CLASS 0-T-shirt/TOP, CLASS 1-Trouser, CLASS 2-Pullover, CLASS 3-Dress, CLASS 4-Coat, CLASS 5-Sandal, CLASS 6-shirt, 

CLASS 7-Sneaker, CLASS 8-Bag, CLASS 9-Ankle Boot 

N
O 

Classe
s 

VGG16 26M parameters 3 Conv+BN+pooling 2 Conv+pooling Proposed_PreConv 

Precisio

n (%) 

Reca

ll 
(%) 

F1-

score 
(%) 

Precisio

n (%) 

Reca

ll 
(%) 

F1-

score 
(%) 

Precisio

n (%) 

Reca

ll 
(%) 

F1-

score 
(%) 

Precisio

n (%) 

Recal

l (%) 

F1-

score 
(%) 

1. 0 87 86 85 85 84 82 83 82 81 90 89 89 

2. 1 95 93 91 93 91 89 91 89 87 100 99 99 
3. 2 89 91 85 87 89 83 85 87 81 91 92 91 

4. 3 91 93 91 89 91 89 87 89 97 93 95 94 

5. 4 89 87 85 87 85 83 85 83 81 91 91 91 
6. 5 95 93 93 93 91 91 91 87 88 99 98 99 

7. 6 81 80 78 79 78 75 77 75 73 83 82 82 

8. 7 93 95 94 91 93 92 87 91 90 95 98 97 
9. 8 97 93 91 95 91 89 93 89 87 99 99 99 

10 9 97 93 95 95 91 91 93 89 87 99 96 97 

 

 

   
   

Figure 4. Precision comparison Figure 5. Recall comparison Figure 6. F1-score comparison 

 

 

In Figure 7, the proposed Proposed_PreConv utilizes maximum accuracy than existing techniques. 

The VGG16 26M parameters approach has resulted to worst performance by furnishing a minimum accuracy 

of about 93.4%. Simultaneously, 2 Conv+pooling approach has resulted to worst performance by furnishing a 

minimum of accuracy value of about 92.4%. The 3 Conv+BN+pooling model acquires lessa accuracy score 

compared to the previous one of about 91.8%. It is clear that the Proposed_PreConv technique operates more 

efficiently when compared with other models by acquiring the maximum recall, accuracy, precision, and F1 

score. Figure 8 depicts the training and validation accuracy for the Proposed_PreConvtechnique. The 

accuracy increases with the epochs exponentially and attain the maximum accuracy at 125 Epochs. The 

training and evaluation accuracy is predicted at the same epochs. 
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Figure 7. Accuracy comparison Figure 8. Training and validation accuracy for the 

possible epoch steps 

 

 

5.1. Confusion matrix 

The table frequently applied to determine a classification model's output on a collection of test data 

for which the true values are known as the confusion matrix. Therefore, the estimated performance of our 

classification model on the data using confusion matrix is shown in Figure 9. 

 

 

 
 

Figure 9. Confusion matrix for Proposed_PreConvtechnique 

 

 

5.2. Correctly predicted classes 

Figure 10 determines the outcomes pictorially that the projected model predicts the predicted classes 

and the correct classes. 

 

 

 

 
 

Figure 10. Correctly predicted classes 
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6. CONCLUSION 

One of the main objectives of this research was to develop pre_convolution neural networks to 

evaluate the difficulty of modern CNN architectures that have achieved state-of-the-art success in terms of 

classification error. A small CNN model based on two key ideas of original fashion-MNIST dataset was 

augmented by three different types of images to be three ways its original one. The projected 

pre_convolution architecture had a few parameter numbers and low computational cost with a high accuracy 

than the existing strategy. The origin images were rotated, taken with acute angle and tilted to obtain the new 

dataset. Regarding the proposed pre-conv, the convolution layer of the standard CNN is improved by 

increasing the number of layers to be three layers with max pooling. Classifying the obtained new dataset 

based on the proposed pre-conv network resulting an improvement in the classification performance of 0.6% 

better classification accuracy than VGG16 26M. It has been shown that the proposed model has a much 

increase in accuracy of 2.2% than the 2 Conv+pooling and 1.6% than the 3 Conv+BN+pooling. Wherfore, 

the limited architecture model and acceptable accuracy at very low parameter numbers, the proposed method 

is more suitable for all the high definition classification. Our future work in this direction is to apply the new 

dataset to determine the classification methods and different convolution structures. 
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