
Bulletin of Electrical Engineering and Informatics

Vol. 10, No. 6, December 2021, pp. 3127~3136

ISSN: 2302-9285, DOI: 10.11591/eei.v10i6.2698 3127

Journal homepage: http://beei.org

On detecting and identifying faulty internet of things devices

and outages

Feng Wang1, Eduard Babulak2, Yongning Tang3
1School of Engineering, Liberty University, Lynchburg, Virginia, USA

2School of Business, Liberty University, Lynchburg, Virginia, USA
3School of Information Technology, Illinois State University, USA

Article Info ABSTRACT

Article history:

Received Jul 24, 2020

Revised Mar 13, 2021

Accepted Oct 24, 2021

 As internet of things (IoT) devices play an integral role in our everyday life, it

is critical to monitor the health of the IoT devices. However, fault detection in

IoT is much more challenging compared with that in traditional wired

networks. Traditional observing and polling are not appropriate for detecting

faults in resource-constrained IoT devices. Because of the dynamic feature of

IoT devices, these detection methods are inadequate for IoT fault detection. In

this paper, we propose two methods that can monitor the health status of IoT

devices through monitoring the network traffic of these devices. Based on the

collected traffic or flow entropy, these methods can determine the health

status of IoT devices by comparing captured traffic behavior with normal

traffic patterns. Our measurements show that the two methods can effectively

detect and identify malfunctioned or defective IoT devices.

Keywords:

Entropy

Fault detection

IoT

IoT outages

Traffic deviation This is an open access article under the CC BY-SA license.

Corresponding Author:

Eduard Babulak

School of Business

Liberty University

Lynchburg, Virginia 24515, USA

Email: ebabulak@liberty.edu

1. INTRODUCTION

As internet of things (IoT) devices play an integral role in our everyday life, it is critical to monitor

the health of the IoT devices because IoT sensors can suffer from a wide range of faults or security attacks

[1]-[3]. For example, a temperature sensor may stop reporting measurement results since its battery is out of

power or it loses network connectivity. The main goal of this paper is to develop efficient methods that can

monitor the health status of IoT devices.

However, fault detection in IoT is much more challenging compared with that in traditional wired

networks [4]-[6]. First, traditional observing and polling are not appropriate for detecting faults in resource-

constrained IoT devices. For example, periodic polling IoT devices can quickly deplete the power supplies of

IoT devices because of high energy consuming wireless communications. It is also hardly possible or

practical for human beings to take care of a large number of IoT devices across a large area. When deploying

IoT devices in a large geographical area, it is not possible to know when the battery dies or if a sensor device

is malfunctioned. In addition, dynamic network conditions, such as temporary link breakdown and frequent

changing topologies, increase the complexity of fault detection. Second, many fault detection techniques for

wireless sensor networks (WSNs) have been proposed in recent years. For example, previous work [7]

proposes a method that uses a Bayesian network to describe the spatial and temporal correlations of data to

detect sensor failures. A Hidden Markov random field based method is used to detect faults [8]. Work [9]

uses the I-V curve of a solar panel to monitor solar panels online at different time intervals. However, those

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 6, December 2021 : 3127 – 3136

3128

detection methods for WSNs or solar panels are inadequate for general IoT fault detection because of the

dynamic feature of IoT devices. For example, in an IoT network, new services and IoT devices may be

added, removed, and changed over time.

Therefore, it is imperative to continually monitor the pulse of the IoT devices, to detect anomalies

and faults, and drive recovery in a timely manner. Consequently, network-wide monitoring has emerged as a

promising approach. Since large-scale IoT devices could generate large traffic volume, traffic-based

detection methods must use very low memory space and processing time. Thus, designing a scalable and

efficient detection method is critical for IoT fault detection.

In this paper, we propose two methods that can monitor the health status of IoT devices through

monitoring IP packet traffic of these devices. The two methods utilize traffic deviation and entropy as

indicators to detect IoT outages. The first method, which uses traffic deviation as outage indicators, can

detect malfunctioned or defective IoT devices that contribute a large volume of IP traffic. To address the

limitation of the first method, we propose an entropy-based method to detect the outages of IoT devices that

do not generate large normal traffic volume. To efficiently monitoring traffic, the two methods uitilize a

compact data structure proposed in our previous work [10]. More specificially, the compact data structure,

called Bitcount, is used to capture IP traffic and identify traffic deviations. Note that our previous work [10]

focuses on using Bitcount to detect heavy hitters. In this paper, we leverage Bitcount to capture IoT traffic

and recover the identities of outages. More specifically, we extend Bitcount to design a new data structure to

detect and identify a different traffic anomaly problem, traffic deviation, which is more challenging than

detecting heavy hitters [11]. The contributions of this work are listed as show in:

− The proposed two key indicators, traffic deviation and flow entropy, are compact and can scale to monitor

a large scale of IoT devices.

− The proposed detection methods can effectively detect and identify malfunctioned or defective IoT

devices.

The rest of paper is organized as shown in: in section 2, we present our research methods. We

evaluate the effectiveness of the two proposed methods in section 3. We conclude the paper in section 4 with

a summary.

2. RESEARCH METHODS

In this section, we present our research methods. More specifically, we first present the data

structure, Bitcount, the key enabler of our methods. Then, we present the traffic deviation and entropy

indicators. Finally, we present the details of two detection methods.

2.1. Bitcount

As shown in Figure 1, Bitcount has a hash function h that evenly maps source/destination IP

addresses onto m buckets. The hash table is used to resolve the collisions due to mapping multiple addresses

into the same bucket. Each bucket maintains a SUM counter and a set of bit counters to record the occurrence

of source/destination IPs that are mapped onto this bucket. The SUM counter counts the number of packets in

the bucket. The SUM counter and the bit counters are denoted as S[i], where i ∈ [0,m-1], and

count[i][0],...,count[i][31], respectively. Formally, whenever a packet arrives, it is hashed to a bucket. The

value of the SUM counter is updated, S[i]=S[i]+1. The corresponding bit counters will be updated, for j ∈ [0,
31], count[i][j]=biti(j), where biti(j) represent the bit value of the j-th bit of the binary representation of the

packet’s IP address.

Figure 1. Bitcount data structure consists of a set of buckets. A hash function is used to map every packet into

a corresponding bucket that maintains a SUM counter and a set of bit counters to record the occurrence of

source/destination IPs that are mapped onto this bucket

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

On detecting and identifying faulty internet of things devices and outages (Feng Wang)

3129

Bitcount can quickly detect and recover the identifiers of heavy hitters, where a heavy hitter is an

item whose frequency is higher than a given frequency threshold. Various approaches, such as counter-based

or sketch-based methods, have been proposed to address the scalability issue. Sketch-based approaches are

the most commonly used method. For example, the most recent works, sketchvisor [12], flowradar [13],

univmon [14], and elastic sketch [15] are sketch-based approaches. Although previous works have shown that

counter-based approaches, such as lossy counting and spacesaving [16], are preferable to sketch-based ones,

there are some problems, such as outage detection, which can only be solved by sketches [16], [17].

Comparing with those methods, Bitcount is more efficient in terms of memory space and the number of

memory accesses [10].

2.2. Traffic deviation indicator

The goal of traffic volume deviation detection is to efficiently identify the IoT devices that have

large deviations of their traffic volume from their expected volume. Any IoT device whose traffic volume

deviation exceeds a pre-specified threshold is a suspicious heavy deviation device. Note that our traffic

deviation problem is different with the heavy change problem defined in existing works [18]-[20].

The works most closely related to our approach are the reversible sketch [21] and group testing-

based method [22]. The reversible sketch uses modular hashing and IP mangling to provide a reversible

procedure to reconstruct original IP address. However, because the reverse calculation is very expensive,

many pre-computing tables are used. More importantly, the reversible sketch cannot provide any accuracy

guarantees so that it has to use another sketch to verify IP addresses. Thus, the space and time costs of this

method are much higher than ours. In [22], a set of hash functions are used to divide items into groups, and

perform testing on each group to detect heavy-hitters. On the contrary, our method can quickly identify large-

deviation devices without performing group testing.

We use an example to illustrate the basic idea of the detection method. Suppose that there are 4

unique items. For each item, its expected occurrence and measured occurrence during measurement interval

T1 are shown in Figure 2 (a). In this example, item 3 is the heavy deviation item because its change rate

(4/7=0.57) is higher than the other items.

Figure 2. An example of detecting a heavy deviation item; (a) the expected occurrence and measured

occurrence of 4 unique items, (b) the expected values of bit counters, (c) the values of bit counters for the

measured occurrence, (d) the difference values of bit counters, (e) the heavy deviation item 3 is identified

according to the bit-set rate

We use 3 bit counters to count the total number of 1-bits in each bit position of binary representation

of items’ IDs. A bit counter is denoted as counti. For each item, the ith bit counter is incremented by one if

the ith bit of the binary representation of the item’s ID 1. The most significant bit of an item is recorded in

the first bit counter, and the second most significant bit is kept in the second counter, and so on. There is an

extra counter to count the total occurrence. In this example, we use 2 sets of bit counters to record the

expected occurrence and the measured occurrence, respectively, as shown in Figure 2 (b) and (c). To detect

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 6, December 2021 : 3127 – 3136

3130

the heavy deviation item, we first calculate the difference between the two total occurrences Sumd, and the

difference between each bit counter, which is shown in Figure 2 (d). Then, for each bit counter, we define its

bit-set rate as
|𝑐𝑜𝑢𝑛𝑡𝑖(𝑇𝑖)−𝑐𝑜𝑢𝑛𝑡𝑖(𝐸𝑥)

𝑆𝑢𝑚𝑑
.

Finally, according to the bit-set rate, we use two thresholds (0.55, 0.45) to recover the heavy deviation

item. That is, if a bit’s bit-set rate is higher than 0.55, the bit is 1. Otherwise, if the bit-set rate is lower than 0.45,

the bit is 0. As shown in Figure 2 (e), we can finally detect and identify the heavy deviation item (item 3). For

more details about the identification algorithm, readers are referred to our previous work [9].

2.3. Entropy indicator

Although we can use the heavy deviation indicator to detect IoT outages, this indicator can only

detect malfunctioned or defective IoT devices that contribute a large volume of IP traffic. Here, we focus on

detecting the outages of IoT devices that do not generate large normal traffic volume. We propose to use a

generalized information entropy as the outage indicator:

Hα(𝑥) =
1

1−𝛼
log2(∑ 𝑝𝑖

𝛼)
𝑛

𝑖=1
 (1)

In our measurement, we set parameter α to 2. The entropy indicates the entropy of the probability when the

number of packets is smaller than the mean of the number of packets.

2.4. Heavy deviation detection

The heavy deviation detection algorithm is composed of two stages: a learning stage and a detecting

stage. The goal of the learning state is to establish a profile of normal traffic. The normal/expected traffic

profile contains the the expected number of packets for each block, and the expected bitwise summation of

source IP addresses. During a detecting stage, deviations from the established profile are considered as

anomaly. The two stages can operate in parallel or in series. We present the two stages in the following two

subsections.

2.4.1. Learning expected traffic profile

Previous works [23], [24] have shown that IoT devices have active/sleep periods over which IoT

devices are generating traffic or remain sleep. IoT devices are more likely to generate synchronized traffic

resulting in bursty aggregate traffic volumes. We exploit the characteristics to build the expected traffic

profiles. In particular, we separate aggregate traffic into active traffic and inactive traffic by using a threshold

θa. For each bucket in the hash table, if its aggregate traffic volume is lower than θa, the traffic is called

inactive. Otherwise, the traffic is called active traffic. The threshold θa is assigned to the first-level hash table,

and each bucket may have the same or different thresholds. Note that the expected traffic profile is built from

active traffic, but the detection can monitor both active and inactive traffic.

The learning stage spans several consecutive intervals in order to collect a sequence of

measurements. Since the expected number packet for each block can be simply derived from SUM counters,

we focus on how to learn the expected bitwise summation. Instead of directly using the bit counter values, the

algorithm first attempts to separate the source IP addresses that generate a locally significant amount of

packets in each block. The reason is that the bit counters can only provide aggregate information. The

accuracy of the traffic profile of those significant devices can affect the accuracy of the expected numbers.

For each specific source, the algorithm calculates its average number of packets. Then, the expected traffic

profile is derived based on expected number of those specific sources and the left bit counter values.

2.4.2. Detecting and identifying heavy deviation

Before starting a detecting stage, the algorithm initializes the SUM counter to the negative expected

number of packets. kth bit counter is initialized to be negative expected bitwise summation. When a packet

arrives, its source IP is hashed to a bucket, and the value of the bucket counter is incremented by 1. Then, for

each source IP, the SUM counter and each bit counter is incremented by the corresponding bit value. At the

end of the detection stage, the algorithm applies the following process to recover the source IPs and estimate

their changes. Finally, the heavy change IP addresses are identified according to the given threshold. The

stage works is being as follow. The first step is to identify source IPs according to two redefined thresholds

θ+ and θ−:

𝐼𝑃 = {
∑ 231−𝑗31

𝑗=0
, 𝑖𝑓 𝑐𝑜𝑢𝑛𝑡[𝑛][𝑗] > 𝜃+ × 𝑆𝑈𝑀[𝑛]

𝐶𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑, 𝑖𝑓 𝜃− × 𝑆𝑈𝑀[𝑛] ≤ 𝑐𝑜𝑢𝑛𝑡[𝑛][𝑗] ≤ 𝜃+ × 𝑆𝑈𝑀[𝑛]
 (2)

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

On detecting and identifying faulty internet of things devices and outages (Feng Wang)

3131

The thresholds are used to improve the accuracy of the identified IPs. In our measurements, we use θ+ = 0.55
and θ−=0.45. The second step is to estimate the number of packets of the identified IP from the first step.

Suppose that the IP is in block i, for each bit counter count[i][j],j ∈{0,...,31}, we define its bit occurrence as:

𝐶(𝑗) = {
𝑐𝑜𝑢𝑛𝑡[𝑖][𝑗], 𝑖𝑓 𝜃+ × 𝑆𝑈𝑀[𝑖]

𝑆𝑈𝑀[𝑖] − 𝑐𝑜𝑢𝑛𝑡[𝑖][𝑗], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3)

The third step is to update SUM counter and bit counters or the next recovery process:

SUM[i] = SUM[i] − Num(IP) (4)

𝑐𝑜𝑢𝑛𝑡[𝑖][𝑗] = {
𝑐𝑜𝑢𝑛𝑡[𝑖][𝑗] − 𝑁𝑢𝑚(𝐼𝑃), 𝑖𝑓 𝑏𝑖𝑡𝑗(𝐼𝑃) = 1

𝑐𝑜𝑢𝑛𝑡[𝑖][𝑗], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

where bitj(IP) represent the value of the jth bit of the binary representation of IP. After that, we can recover

the next IP address from the same bit counters. The number of packets Num(IP) is estimated by the minimum

bit occurrence: Num(IP) = min{C(j)}.0 ≤ j ≤ 31. In the previous example, we can estimate the estimated

frequency of item 4 is 30.

2.5. Entropy detection

In order to identify the IoT devices with small traffic volume, we combine a counting bloom filter

(CBF) [25], [26] with a Bitcount. The CBF is to check the membership of IoT devices. As shown in Figure 3,

the left hash table is used to collect traffic volume to calculate the entropy, and the bit counters are used to

record the faulty devices’ IP addresses.

The detection process consists of two stages: a detection stage and an identification stage. During

the outage detection stage, the algorithm compares each bucket’s entropy against its normal profile. When a

bucket exhibits a behavior that is outside its normal range or profile, the algorithm moves to the identification

stage to identify the faulty device.

Figure 3. Implementaiton of the entropy based detection method. The counting bloom filter (CBF) is used to

detect the first packet from a source IP at two dierent stages. The Bitcount is used to record the source IP

addresses

2.5.1. Outage detection

The process consists of two stages: a detection stage and an identification stage. During the outage

detection stage, each bucket's entropy is compared against a pre-defined threshold. When the value exceeds

the threshold, the process moves to the identification stage.

During a detection stage, when a packet arrives, the CBF is used to determine if the packet has a

new source IP address. If this is true, the source address is inserted into CBF and the bit counters. Thus, the

bit counters remember all source IPs during the detection stage.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 6, December 2021 : 3127 – 3136

3132

A sliding window containing the most recent elements is used to calculate the proposed entropy

value. More specifically, the number of packets from each bucket is used to calculate its generalized

information entropy. When the entropy value is lower than a given threshold, this bucket is reported as a

suspicious bucket.

2.5.2. Outage identification

Once detecting a change in a bucket's entropy, the identification stage starts. Upon receiving a

packet, the source IP address is checked in the CBF to see if it contains the address. If the source IP is not in

the filter, the source is a new one and it will be discarded because we are interested in detecting the outages

occurring in the existing sources. If at least one of the counter values from the CBF is one, the packet is

identified as the first packet during the identification stage. The counters in the CBF are incremented by one.

Next, the algorithm deletes the source IP from the bit counters. If all the counter values are 2, the incoming

packet is a duplicated packet. At the end of the identification stage, the source IP address left in the bit

counters is the faulty device.

3. MEASUREMENT RESULTS AND DISCUSSION

In this section, we evaluate the effectiveness of the proposed two methods. We first present our

dataset. Then, we present the measurement results, and discuss the future work.

3.1. Dataset

We use two types of dataset to evaluate our methods. First, we evaluate the scalability and

effectness of the enabler of our methods, Bitcount, by using sythetic datasets. We study the impact of various

choices of parameters on the accuracy of data strucutre. We also use the synthetic datasets to compare our

method with other implementations. We generate the synthetic datasets according to a Zipf distribution with

different skewness (=[0.8,2.0]). Each dataset is comprised of 70 M packets.

Second, we evaluate the effectiveness of our detection methods on real IoT traffic data from [24].

The IoT traffic are collected from a wide range of IoT devices. There are 96 IoT devices, including Smart

Things, Amazon Echo, Samsung SmartCam, Dropcam, Sleep sensor, Smart plug, Smart Bulb. The IoT traffic

trace contains 2.6 million IPv4 packets.

3.2. Performance of bitcount

First, we detect 10 different numbers of heavy keys (from 50 to 500) based on the synthetic datasets.

For each case, we measure the lower bound of memory usage without false positives and negatives. The

memory usage is determined by the array size of the number of buckets in Bincount. Each bucket in Bincount

has 33 4-byte counters. From Figure 4 (a), we find that when the distribution is less skewed (=0.8 case), we

need more memory. On the other hand, when the distribution is more skewed, such as =2, we need less

memory. For example, we need less than 46 buckets to detect 100 heavy keys when >1. However, we need

150 buckets when =0.8.

(a) (b)

Figure 4. Measurement results based on the synthetic datasets; (a) the lower bound of number of buckets

used in Bitcount to correctly detect and recover all heavy keys without false positives and negatives,

(b) memory usage for three different approaches

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

On detecting and identifying faulty internet of things devices and outages (Feng Wang)

3133

Second, we compare the memory usage of Bitcount with that of reversible sketch [21] and group

testing [22]. The memory usage includes the total memory space. We refer to the Reversible sketch as

``Reversible", and the group testing as ``Group" for brevity. Figure 4 (b) shows the comparison result. We

find that our method always uses much less memory than the others. In order to detect all heavy keys, group

testing has to use more than 1.28 MB memory, but our method only needs less than 85 KB. The memory

benefit of our method becomes more impressive as the number of heavy keys grows. For example, when the

number of heavy keys is increased from 50 to 500, the space requirement of our method grows by a factor of

about 3.4, yielding a total size of about 85 KB. On the contrary, the space used by Reversible sketch are

exploded by a factor 7.

From the measurement results from the synthetic data, we find that the enabler of our methods,

Bitcount, maintains a small number of counters for faster and more accurate detection of heavy keys while

incurring a small increase in memory usage.

3.3. Real IoT traffic measurements

In this subsection, we use the real IoT traffic to evaluate the effectiveness of our methods on

detecting faulty IoT devices and IoT device outages in term of detecting latency. We use two malfunctioning

scenarios. In the first scenario, we simulate a faulty IoT device by generating more packets than its typical

traffic volume. This type of fault could be due to a malicious attacker who controls this device. We use the

traffic deviation method to detect the scenario. The second malfunctioning scenario simulates an IoT outage

by disconnecting the devices after running it for a certain time. The type of fault could be due to low battery.

We use the entropy method to detect it.

3.3.1. Scenario 1: faulty devices

In the first malfunctioning scenario, we select a smart things, which typically generates less than 5%

of packets during fault free operation. We increase the traffic volume from this device from 5% to 30% after

100th time bins (indicating by a dashed vertical line) as shown in Figure 5 (a). Since the traffic volume of the

smart things is higher than its expected volume, the traffic deviation method can quickly detects this fault as

a heavy change device. After the detecting stage, the method can identify the IP address of the device by

using Bitcount, as shown in Figure 5 (b).

Time (1 unit=10s)

(a)

Time (1 unit=10s)

(b)

Figure 5. Malfunctioning scenario 1: detecting and identifying a faulty IoT device (smart things). Both

figures only show the number of packets during active periods. The dashed vertical lines indicate when the

fault starts and identified; (a) a faulty device (b) the faulty device is identified as a heavy change device

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 6, December 2021 : 3127 – 3136

3134

3.3.2. Scenario 2: IoT outages

In the second malfunctioning scenario, we simulate two outages occurring at two IoT devices. The

IoT devices are 1) a smart baby monitor, which generates 3.41% of packets, and 2) a smart sleep sensor,

which generates 1.85% of traffic volume. The sliding window is set to 60 inactive periods, and the threshold

is set to 0.8. Figure 6 (a) shows the overall traffic (fault free). Figure 6 (b) and (c) show that our proposed

detection method successfully detects the malfunctioning baby monitor after about 17 minutes, and the sleep

sensor after 30 minutes.

One of the factors that can affect the scalability of this method is the size of the Bloom Filter. The

size of the Bloom Filter is determined by the number of unique source IP addresses and the false positive. In

order to have a small false positive for a large number of IoT devices, we need a very large Bloom Filter.

Therefore, we must consider how to design the Bloom Filter. One possible solution is to use multiple Bloom

Filters. We will investigate how to effciently divide IoT devices into multiple filters.

(a) entropy of overall traffic (outage free) (b) smart baby monitor (generating 3.41% of

packets)

(c) smart sleep sensor (generating 1.85% of packets)

Figure 6. Measurement results of detecting two IoT outages; (a) the overall traffic without any outages. In (b)

and (c), around 920th time bins (indicating by the left vertical line), the two devices are disconnected. The

entropy detection method successfully detects the malfunctioning baby monitor after about 17 minutes, and

the sleep sensor after 30 minutes (indicating by the right vertical line)

4. CONCLUSION

In this paper, we propose two fault and outage detection methods for IoT devices. Both methods are

more space-efficient than the existing sketch-based method. The experimental evaluations show that the two

methods can be used to detect and identify faulty IoT devices or IoT outages with less memory and

computational overhead. Based on our analysis and measurements, our methods can be efficiently

provisioned as a utility in IoT devices as a virtual service to detect IoT faults or outages.

REFERENCES
[1] P. R. J. Pêgo and L. Nunes, "Automatic discovery and classifications of IoT devices," 2017 12th Iberian

Conference on Information Systems and Technologies (CISTI), 2017, pp. 1-10, doi: 10.23919/CISTI.2017.7975691.

[2] H. Ning, H. Liu, and L. T. Yang, “Cyberentity Security in the Internet of Things,” Computer, vol. 46, no. 4, pp. 46-

53, 2013, doi: 10.1109/MC.2013.74.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

On detecting and identifying faulty internet of things devices and outages (Feng Wang)

3135

[3] J. Granjal, E. Monteiro and J. Sá Silva, "Security for the Internet of Things: A Survey of Existing Protocols and

Open Research Issues," in IEEE Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1294-1312, thirdquarter

2015, doi: 10.1109/COMST.2015.2388550.

[4] I. Hafeez, A. Y. Ding, and S. Tarkoma, “IOTURVA: Securing device-to-device (D2D) Communication in IoT

Networks,” Proceedings of 12th ACM Workshop on Challenged Networks, MobiCom CHANTS '17. ACM, pp. 1-6,

2017, doi: 10.1145/3124087.3124093.

[5] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. Sadeghi and S. Tarkoma, "IoT SENTINEL: Automated Device-

Type Identification for Security Enforcement in IoT," 2017 IEEE 37th International Conference on Distributed

Computing Systems (ICDCS), 2017, pp. 2177-2184, doi: 10.1109/ICDCS.2017.283.

[6] Younghee Park, S. Daftari, P. Inamdar, S. Salavi, A. Savanand and Youngsoo Kim, "IoTGuard: Scalable and agile

safeguards for Internet of Things," MILCOM 2016 - 2016 IEEE Military Communications Conference, 2016, pp.

61-66, doi: 10.1109/MILCOM.2016.7795302.

[7] E. W. Dereszynski, Thomas G. Dietterich, “Spatiotemporal Models for Data-Anomaly Detection in Dynamic

Environmental Monitoring Campaigns,” TOSN, vol. 8, no. 1, pp. 3-36, 2011, doi: 10.1145/1993042.1993045.

[8] Jianliang Gao, J. Wang and X. Zhang, "HMRF-based distributed fault detection for wireless sensor networks,"

2012 IEEE Global Communications Conference (GLOBECOM), 2012, pp. 640-644, doi:

10.1109/GLOCOM.2012.6503185.

[9] P. K. Malik, R. Singh, A. Gehlot, “Online Monitoring of Solar Panel Using I–V Curve and Internet of Things,”

Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019),

2020, vol 121, pp. 225-234, doi: 10.1007/978-981-15-3369-3_17.

[10] F. Wang and L. Gao, "Simple and Efficient Identification of Heavy Hitters Based on Bitcount," 2019 IEEE 20th

International Conference on High Performance Switching and Routing (HPSR), 2019, pp. 1-6, doi:

10.1109/HPSR.2019.8808101.

[11] G. Cormode and S. Muthukrishnan, "What's new: finding significant differences in network data streams," in

IEEE/ACM Transactions on Networking, vol. 13, no. 6, pp. 1219-1232, Dec. 2005, doi:

10.1109/TNET.2005.860096.

[12] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y.C. Chen, and G. Zhang, “SketchVisor: Robust Network

Measurement for Software Packet Processing,” Proceedings of the Conference of the ACM Special Interest Group

on Data Communication (SIGCOMM), pp. 113-126, 2017, doi: 10.1145/3098822.3098831.

[13] Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A better NetFlow for data centers,” Proceedings of the 13th

Usenix Conference on Networked Systems Design and Implementation (NSDI), pp. 311-324, 2016, doi:

10.5555/2930611.2930632.

[14] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One Sketch to Rule Them All: Rethinking

Network Flow Monitoring with UnivMon,” Proceedings of the 2016 ACM SIGCOMM Conference, pp. 101-114,

2016, doi: 10.1145/2934872.2934906.

[15] T. Yang, et al., “Elastic Sketch: Adaptive And Fast Network-Wide Measurements,” Proceedings of the 2018

Conference of the ACM Special Interest Group on Data Communication (SIGCOMM), pp. 561-575, 2018, doi:

10.1145/3230543.3230544.

[16] G. Cormode and M. Hadjieleftheriou, “Finding Frequent Items In Data Streams,” PVLDB, vol. 1, no. 2, pp. 1530-

1541, 2008, doi: 10.14778/1454159.1454225.

[17] R. Berinde, G. Cormode, P. Indyk, and M. J. Strauss, “Space-Optimal Heavy Hitters With Strong Error Bounds,”

Proceedings of the Twentyeighth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems

(PODS), pp. 157-166, 2009, doi: 10.1145/1559795.1559819.

[18] W. Feng, Z. Zhang, Z. Jia, Z. Fu, “Reversible Sketch Based on the XOR-Based Hashing,” Services Computing

2006. APSCC '06. IEEE Asia-Pacific Conference on, pp. 93-98, 2006, doi: 10.1109/APSCC.2006.91.

[19] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change detection: Methods, evaluation, and

applications,” Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement (IMC’03), vol. 10,

pp. 234-247, 2003, doi: 10.1145/948205.948236.

[20] R. Schweller, A. Gupta, E. Parsons, and Y. Chen. “Reversible Sketches for Efficient and Accurate Change

Detection over Network Data Streams,” Proceedings of the 4th ACM SIGCOMM Conference on Internet

Measurement (IMC’04), pp. 207-212, 2004, doi: 10.1145/1028788.1028814.

[21] R. Schweller et al., "Reversible Sketches: Enabling Monitoring and Analysis Over High-Speed Data Streams," in

IEEE/ACM Transactions on Netw orking, vol. 15, no. 5, pp. 1059-1072, Oct. 2007, doi:

10.1109/TNET.2007.896150.

[22] G. Cormode and S. Muthukrishnan, “What's Hot and What's Not: Tracking Most Frequent Items Dynamically,”

ACM Trans. Database Systems, vol. 30, no. 1, pp. 249-278, 2005, doi: 10.1145/1061318.1061325.

[23] N. Apthorpe, D. Reisman and N. Feamster, “Closing the Blinds: Four Strategies for Protecting Smart Home

Privacy from Network Observers,” CoRR, vol. 1705, 2017.

[24] A. Sivanathan, et al., "Characterizing and classifying IoT traffic in smart cities and campuses," 2017 IEEE

Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2017, pp. 559-564, doi:

10.1109/INFCOMW.2017.8116438.

[25] B. Bloom, “Space/Time Tradeoffs in Hash Coding With Allowable Errors,” Communications of the ACM, vol. 13,

no.7, pp. 422-426, 1970, doi: 10.1145/362686.362692.

[26] Li Fan, Pei Cao, J. Almeida and A. Z. Broder, "Summary cache: a scalable wide-area Web cache sharing protocol,"

in IEEE/ACM Transactions on Networking, vol. 8, no. 3, pp. 281-293, June 2000, doi: 10.1109/90.851975.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 6, December 2021 : 3127 – 3136

3136

BIOGRAPHIES OF AUTHORS

Feng Wang is a professor with the School of Engineering and Computational Sciences at

Liberty University. He received his Ph.D degree in Electrical and Computer Engineering at the

University of Massachusetts, Amherst. He received his B.E degree from Zhejiang University

in China, and M.S. degree from Yanshan University in China. His research interests include

Internet of Things, Internet routing, and networks security.

Eduard Babulak is a professor and professional engineer (P.Eng.) with School of Business

and Computet Science at Liberty University. He received his Ph.D., degree in Computer

Science at the Staffordshire University in UK, Doctor-Habilitated (Docent D.Sc., degree) in

Information Technology at University of Pardubice in Czech Republic, M.Sc. in Information

Systems degree at University of East London in UK, High National Certificate in Computer

Aided Engineering at Brighton College of Technology in UK, and degree in Electrical

Engineering at Technical University of Kosice in Slovakia. His research interests are in the

field of Computing, Data Networks, Cybersecurity, the IoT, ICT eServices, Future Internet and

Smart Cyberspace. He is Life Chartered Fellow, Mentor and Elite Group Member of the

British Computer Society and Fellow of Royal Society RSA in London, UK. He is Mentor and

Senior Member of the IEEE and ACM, Chartered Engineer and Professional Member of the

IET in London, UK, Professional Member of the American Society for Engineering Education

(ASEE) & American Mathematical Society (AMS). He serves as Editor & Reviewer for

number of prestigious IEEE, Elsevier, Springer, Hindawi & MDPI, plus Journals.

Yongning Tang is a professor with the School of Information Technology at Illinois State

University. He received his Ph.D degree in Computer Science from DePaul University. He

received his B.E. and M.S. degrees, both from Hefei University of Technology in China. His

research interests include fault diagnosis in large-scale distributed networking systems, cloud

computing, network security, wireless networks, and intelligent defined networking.

