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 In Indonesia, cancer is very burdensome financially for sufferers as well as 

for the country. Increasing the access to early detection of cancer can be  

a solution to prevent the situation from worsening. Regarding the problem of 

cancer lesion detection, a whole-body bone scan image is the primary 

modality of nuclear medicine for the detection of cancer lesions on a bone. 

Therefore, high segmentation accuracy of the whole-body bone scan image  

is a crucial step in building the shape model of some predefined regions in 

the bone scan image where metastasis was predicted to appear frequently.  

In this article, we proposed an automatic whole-body bone scan image 

segmentation based on constrained local model (CLM). We determine 111 

landmark points on the bone scan image as the input for the model building 

step. The resulting shape and texture model are further used in the fitting step 

to estimate the landmark points of predefined regions. We use the CLM-based 

approach using regularized landmark mean-shift (RLMS) to lessen the effect  

of ambiguity, which was struggled by the CLM-based approach. From the 

experimental result, we successfully show that our proposed image segmentation 

system achieves higher performance than the general CLM-based approach. 
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1. INTRODUCTION 

In many countries, cancer had been a significant cause of morbidity and mortality for several 

decades. It is estimated that by 2030, the incidence will increase by 70% to 1.3 million cases [1].  

For the detection of bone problems such as cancer lesion, a whole-body bone scan is the primary modality of 

nuclear medicine, to find out whether the cancers have spread to the bones besides finding out how  

the metastases respond to chemotherapy and radiotherapy treatment. Besides, a bone scan is an essential tool 

for detecting whether cancer has spread over the skeleton started from different organs [2]. 

The skeleton segmentation process in the bone scan image is the initial and essential stage of  

the whole stage of the metastasis detection system in bone scan images [3-6]. For that purpose, the skeleton 

of the bone must be divided into several predetermined regions, such as the head and spine region, upper 

arms and collarbone region, chest region, and pelvis and upper thighs region. In general, the bone scan 

images produced by whole-body scintigraphy with 99mTc-methylene diphosphonate (99mTc-MDP) often 
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degraded by a large amount of noise, which might affect the segmentation process [7]. Tissue inhomogeneity, 

images with low resolution, noise, and changes in structure are some examples of challenges faced by  

the segmentation process in this domain. The results of segmentation will significantly affect the calculation 

of the bone scan index (BSI) value which further will be calculated as a guide in determining whether or not 

metastatic lesions are detected in a particular region of bone in cancer patients [4, 8-11]. Another challenge 

of automatic skeleton bone segmentation lies in the fact that the segmented regions of the skeleton might be 

overlapped. For example, the upper arm region is overlapped with the chest region; the head-spine region is 

overlapped with the upper arm and chest region [3, 11]. Those conditions might cause considerable 

difficulties when applying classical segmentation techniques [12] or deep learning methods [5, 13, 14]. 

Meanwhile, deformable models have been extensively studied and widely used in medical image 

segmentation, with promising results [12]. Active shape model (ASM) is one kind of extension of deformable 

models that incorporate prior shape information to offer robustness to image noise and boundary gaps and 

allow integrating boundary elements into a coherent and consistent mathematical description [12]. ASM is 

one of the constrained local model (CLM) based approaches which was widely used in bone scan image 

segmentation [3, 15, 16]. On the other hand, ambiguity is commonly a significant problem in CLM based 

approach. We have to learn local image patch detectors from labeled training images for each landmark point 

in the object. However, the local support is small, and the variation of appearance is abundant in the training 

set, which in turn leads to the problem of ambiguity. From each landmark detector, we can observe this 

ambiguity problem in the non-parametric distribution of landmark point locations. To solve the problem,  

we use the regularized landmark mean-shift (RLMS) [17] in our proposed approach. 

 

 

2. RELATED WORKS 

Cristinacce and Cootes [18] initially proposed CLM to describe the modeling of a class with  

a distinct set of corresponding features. By using the iterative template generation and shape constrained 

search technique, the model is matched to new instances of an object. The appearance variation of a set of 

template regions surrounding individual features is learned by CLM. The advantages of CLM influence some 

researchers in their works, such as [19] and [20]. Baltrusaitis et al. [20] develop Conditional Local Neural 

Fields (CLNF) to detect landmark points in their OpenFace system with very satisfying accuracy. CLM was 

also used as the basis for the development of discriminative response map fitting (DRMF), which was used in 

the face fitting scenario [19]. One of the popular CLM based approaches is ASM. The utilization of ASM to 

localize structures in medical images was first proposed by Cootes et al. [21]. The proposed shape model is 

based on the representation of objects based on a collection of labeled points, with each point is positioned at 

a particular part of the object. By evaluating the position statistics from the labeled point, a point distribution 

model can then be generated. This model gives the average position of the points and the main shape 

descriptions of the variations found in the training data.  

Some researchers sought to develop the ASM method namely [22-24]. Van Ginneken et al. [24] 

proposed the development of a new appearance model as a representation of the gray-level variation around 

the object boundary. If the classic ASM method uses a normalized first derivative profile, this study 

considers the use of a local image structure descriptor, the local moment histogram, which is extracted from 

images that have passed the filter stage using a Gaussian derivative filter bank. Furthermore, statistical 

analysis is carried out to investigate which descriptors are most informative at each resolution and each 

landmark. Meanwhile, Cristinacce and Cootes [22] used non-linear boosted-features that were trained using 

GentleBoost [25] to model each feature. In their research, Cristinacce and Cootes [22] investigate local 

feature detection using boosted features and boosted regression, which aimed to obtain local feature point 

predictions without having to search for sliding windows in the local neighborhood. The proposed approach 

can produce satisfactory performance. Ebhotemhen [23] use the k-nearest neighbor technique to adjust  

the position of each landmark extracted using the Haar filter. The best position is the position where the local 

edge structure is closest to the corresponding landmark. Several neighboring points from the initial 

landmarks were evaluated in the process. This stage is carried out on the shape model training to get a better 

segmentation quality of the shape model results. 

Further, Sadik et al. [3] implemented the ASM method at the segmentation stage to build a 

statistical model of the object in the image. Eight shape models (with one model covering four anterior parts 

and four posterior parts) are produced from the training model, which is further used in the skeleton 

segmentation process. Continuing their work, Sadik et al. [15] surveyed with their Computer-Assisted 

Diagnosis (CAD) system, aiming to improve the performance and reduce the variety of different observations 

from medical personnel who were assigned to interpret the bone metastases. Meanwhile, Horikoshi et al. [16] 

prove the initial assumption that a database of bone scan image training built from European patients could 

not be used to detect metastases on Japanese patients. The differences in the bone characteristics of the 
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European population with the Japanese population [16, 26] are proven to be the cause. Zengin et al. [27] also 

stated that there is a difference in the bone geometry between different ethnicities in the experiment of 

investigating the bone geometry of White, Black and South Asian men in the UK. White men have more 

extended diaphyseal sites and hip axis length. At the radius and tibia diaphysis, Black men had more cortical 

bone within a slightly larger periosteal envelope. For the same size and body weight, South Asian men had 

similar sized bones compared to White and Black men at the diaphysis but had thinner cortices. Based on the 

fact that the differences in the characteristics of the bones for several populations affect the quality of 

segmentation result, in our experiment we use Indonesian patients’ dataset, as the type of race and ethnicity 

in Indonesia is more diverse than in Sweden and Japan [28]. 

 

 

3. CONSTRAINED LOCAL MODEL (CLM) 

In this section, we briefly describe the CLM-based method, which consists of two steps, namely, 

model building and model fitting. 

 

3.1.  Model building 

CLM is a technique to build a shape and appearance model of a flexible object (such as an organ) in 

the image. The model is built based on the statistics obtained from labeled training images. Each model 

consists of a flexible shape template  , which describes how several essential points of the object can vary, 

and a statistical model of the gray level expected in the region around the model  ( ) (response maps) [17]. 
 

 

A model is trained from a set of images annotated manually by humans. By analyzing the shape 

variations and appearance on the training image, a model is built so that it can replicate these variations.  

To interpret a new image, we must find the right parameters to match the model instances to the image.  

After the model matches the image, the settings or position of the model can be used to classify or make 

measurements, or as input for subsequent processing. To make a statistical model of appearance, we took a 

set of annotated images from several examples. Previously, it must be determined in advance a set of 

landmarks that can precisely describe the shape of the target and which landmarks can be found on  

the training image. High curvature or T-junction is the right choice as a landmark. Intermediate points can be 

added between dominant landmarks. Connectivity of each landmark is also recorded to show how landmarks 

are connected. For 2D images, landmark points *(       )+ for a single example can be represented as    

element vectors,  . 
 

 

For a training image, a vector of   is produced. Statistical analysis of the vectors must consider that 

the shape is represented in the same coordinate frame. The shape of an object is deemed to be independent of 

the position, orientation, and scale of the object. Normalization process such as translation, rotation, and 

scaling must be applied to each shape so that the total distance   of each shape to the mean shape is minimal. 

 

 

Each image is annotated by using   landmark points. Each shape model has   parameters, and to 

obtain variations of the shape model, we have to change the parameter value. Further, principal component 

analysis (PCA) is used to reduce the model dimension. The position of the model point in image   is given by: 

 

 

           rotates the images at   angles, scaling at  , and translation on (     ). The value of  ,  

the rotating frame, are the shape model parameters in the form of a vector with   dimension. 
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The shape variations can be built by changing the values of  . The variance of   and    values on  

the training images were given by λi values. The adjustment is limited by   √  , to ensure that the generated 

shape variations would be as similar as possible with the training images. The model variations concerning 

the i
th 

parameter (  ) is called    -mode from the model.   is eigenvector; the rotated coordinate frame  

is adjusted with the original set of shape vector.   contained several   eigenvectors from covariance matrix   

where   = (          ). For example, if we applied the formula to point (   ), we will obtain: 

 

 

Supposed we want to obtain the best pose (translation, rotation, scale) and the shape parameter to fit 

the instance model   to several points on new image  , we have to minimize the sum of square distance 

between the model and the targeted points on the images as seen as: 

 

 

Meanwhile, to compute a response map on the local region around the corresponding landmark 

point, a local expert function will be used, such as the Mahalanobis distance, a classifier such as linear SVM [29],  

or a regressor [22]. The region that supports a local expert could be either one-dimensional (i.e., line) or  

two-dimensional (such as a rectangular region. 

 

3.2.  Model fitting 

The fitting process in CLM-based methods consists of two main steps: (1) predict the local 

displacements of the shape model points, and (2) constrain the configuration of all point to adhere to  

the shape model. These two steps are iterated until they satisfy a convergence criterion. In this article, we apply  

the regularized landmark mean-shift (RLMS) as proposed by Saragih et al. [17], as its simplicity and efficiency. 

 

 

4. PROPOSED SEGMENTATION SYSTEM 

Our purpose in this research is to derive a model from representing the shapes of particular regions 

in the whole-body bone scan image. Some samples of whole-body bone scan images are shown in Figure 1. 

Different examples of bone scan images have different shapes so that a rigid shape model would not be 

appropriate. We aim to build a model that describes both typical shape and typical variability using  

the examples such as in Figure 1 as the training set, which further will be used in the whole-body bone scan 

segmentation. In section 4.1, we briefly explained the bone scan images dan their annotation process.  

Our proposed segmentation system is described in Section 4.2. 

 

4.1.  Bone scan image annotation 

Bone is the most common and clinically significant site of metastasis, especially in osteotropic 

tumors such as prostate cancer and breast cancer [2]. Whole-body scintigraphy with 99mTc-methylene 

diphosphonate (99mTc-MDP) is the most available and cheapest technique for detecting cancerous lesions in 

bone. The bone scan is the first-line imaging for screening and follow-up of the bone metastases in prostate 

cancer patients. The diagnosis of a bone scan is generally enforced qualitatively through visual reading. 
 

 

      
      

Figure 1. Some examples of whole-body bone scan images 

          (    )  (      )  (                                             )(    )  

             (    ) 
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Bone scan test is a nuclear-based imaging test to help diagnose and track the number of bone 

diseases. The bone scan test is usually recommended by physicians for patients experiencing bone skeletal 

pain, bone infection, or bone injury that cannot be seen using standard X-rays. Besides, a bone scan test can 

also be used as an important tool for detecting cancer that has spread (into metastases) to the bone part of  

the initial location of the tumor, as occurs in breast or prostate cancer. To detect the metastases, firstly,  

we have to ensure that a mass appeared in a particular region is metastases. Therefore, in this article,  

we proposed an automatic segmentation system that divides the bone scan image into some particular 

regions, as shown in Figure 2, which is based on the regions specified by Sadik et al. [3]. Sadik et al. [3] 

divided the anterior view of the whole-body bone scan image into four regions, namely head and spine 

region, chest region, proximal arms and clavicle region, and pelvis and proximal legs region. 
 
 

 
 

Figure 2. Predefined regions of whole-body bone scan image [3] 
 

 

To model those regions, we represent each region by a collection of points. For the bone scan 

images, we have chosen to place the points around the boundary of predefined regions, as shown in Figure 3. 

Hence, each labeled point represents a particular part of the region boundary. The method works by modeling 

how different labeled points tend to move together as the shape varies. If the labeling is incorrect, with  

a particular point placed at different sites on each training shape, the method will fail to capture shape 

variability reliably. We call these labeled points as landmark points. The purpose of the annotation process is 

to provide important landmark points to be used in the segmentation process. This process consists of three 

main steps: (1) determine the regions for segmentation, (2) determine the landmark points for each region, 

and (3) represent the region by determining the connectivity between landmark points already defined in step 

(2). For this purpose, we divide the bone scan image into 9 (nine) predefined separated segments, as can be 

seen in Figure 3, namely (i) head_ant segment, (ii) R.chest_ant segment, (iii) L.chest_ant segment, (iv) 

R.arm_ant segment, (v) L.arm_ant segment, (vi) hips_ant segment, (vii) C.hipsHole_ant segment,  

(viii) R.hipsHole_ant segment, and (ix) L.hipsHole_ant segment. Those nine segments represent the four 

regions, as defined by Sadik et al. [3] in Figure 2. Further, we define the landmarks points for each segment, 

along with their connectivity as follows: 

a. "Head_ant" segment: head and spine segment; the segment is represented by the green line; the number 

of landmark points is 26, with the index number starts from 0 to 25. 

b. "R.chest_ant" segment: right chest segment; the segment is represented by the red line; the number of 

landmark points is 11, with the index number starts from 26 to 36. 

c. "L.chest_ant" segment: left chest segment; segment with the purple line; the number of landmark points 

is 11, with the index number starts from 37 to 47. 

d. "R.arm_ant" segment: right proximal arms and clavicles segment; segment with the navy line; t 

he number of landmark points is 10, with the index number starts from 48 to 57. 

e. "L.arm_ant" segment: left proximal arms and clavicles segment; segment with the cyan line; the number 

of landmark points is10, with the index number starts from 58 to 67. 

f. "hips_ant" segment: pelvis and proximal legs segment; segment with the orange line; the number of 

landmark points is 27, with the index number starts from 68 to 94. 

g. "C.hipsHole_ant" segment: center hole of pelvis segment; segment with the yellow line; the number of 

landmark points is 8, with the index number starts from 95 to 102. 

h. "R.hipsHole_ant" segment: right hole of pelvis segment; segment with the brown line; the number of 

landmark points is 4, with the index number starts from 103 to 106. 

i. "L.hipsHole_ant" segment: left hole of pelvis segment; segment with the light purple line; the number of 

landmark points is 4, with the index number starts from 107 to 110. 
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Figure 3. Landmark points for each segment 

 

 

4.2.  Segmentation system 

Our proposed segmentation system consists of two phases: (1) the model-building phase, a model  

is learned from the appearance variations to the shape variations, and (2) the fitting phase, the learned model 

is applied to a test image to localize landmark points. An overview of the segmentation system is shown in 

Figure 4. Firstly, in the model building phase, several images are annotated by determining several landmark 

points to indicate the segments we want to identify. Further, the annotated image will be trained using  

the CLM method to produce shape and patch model. The shape model is constructed by applying principal 

component analysis (PCA) to the point distribution model (PDM) from the training images. The texture 

models were created by extracting several mean-shift vectors from each patch around each landmark point. 

The next phase, namely the fitting phase, is the phase in which the system fits the right shape model to  

the test image. In the shape fitting process, we use the regularized landmark mean-shift (RLMS) method [17].  

This process produces an estimate of the location of landmark points in the test image. Furthermore, 

segmentation is done by combining the results of the estimation of landmark locations with metadata files 

that contain the definitions for each segment. 

  

 

 
 

Figure 4. Proposed segmentation system 
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5. RESULTS AND DISCUSSION 

In this section, we explain the experimental result of segmenting the whole-body bone scan image. 

We use menpo [30] for the implementation of CLM. We explained the preprocessing step in section 5.1, 

while the result and analysis in section 5.2. 

 

 

    
    

Figure 5. Examples of some variations of the raw bone scan image 

 

 

5.1.  Data preprocessing 

For the experiment purpose, the bone scan images were obtained from the image database of  

the Faculty of Nuclear Medicine, Universitas Padjajaran, in DICOM format. These images were bone scan 

images from 20 patients. The bone scan images obtained are quite diverse, as can be seen in Figure 5, which 

is described as follows: 

a. Whole-body bone scan image anterior view  

b. Whole-body bone scan image posterior view 

c. Bone scan image of the pelvis  

d. Bone scan image of the chest  

e. Bone scan image of the head 

Aside from the diversity of raw bone scan images, for this research, we only process a whole-body 

bone scan image with a black background. Therefore, we crop the bone scan image from the raw image to 

obtain the bone scan image having a single object in it, with a resolution of 256x1024 pixels. An example of 

cropping results can be seen in Figure 6 (a). Meanwhile, as can be seen in Figure 5, some bone scan images 

were suffered from poor quality. We increase the contrast of the raw image to enhance the bone parts in  

the bone scan image because the annotation process requires a precise location of bone parts. Examples of  

the result of changing the contrast can be seen in Figure 6 (b). 

 

 

  

 

  
     

(a)  (b) 

   

Figure 6. Preprocessing result, (a) Cropping result, (b) Changing contrast 
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5.2.  Result and analysis 

For the experiment, we use parameters as follows: the size of the patch shape is 10 x 10 pixels; 

diagonal is 200; the number of iterations for the fitting process is 20; the size of the context shape is  

34x34 pixels. We use image gradient orientation [31] as features which are extracted from each patch  

and orthogonal PDM [32] in the construction of the shape model. The input of the model building phase is 20 

annotated bone scan images, with some examples that can be seen in Figure 7. As we can see in Figure 7, 

there are some shape variations for chest, proximal arm, clavicles, and pelvis.  

 

 

      
      

Figure 7. Shape variations of training images 

 

 

The purpose of this phase is to get the shape model and patch model. The shape model consists of  

a mean shape and several possible shape variations. The shape model produced at this phase becomes  

the segment representation, which will then be used in the segmentation process. In Figure 8, we provide  

the mean shape for each fold, which will be used as an initial reference shape in the fitting process.  

Some examples of shape model variations produced from the model building phase can be seen in Figure 9.  

  

 

     
     

(a) (b) (c) (d) (e) 

 

Figure 8. Mean shape for each fold, (a) Fold-1, (b) Fold-2, (c) Fold-3, (d), Fold-4, (e) Fold-5 

 

 

The segmentation process was defined as fitting the shape models onto the test image. The fitting 

mechanism used 5-fold cross-validation with cumulative error distribution (CED) as the error measurement. 

In each fold, there were four testing images and 16 training images. For each fold, we define initial image 

reference as depicted in Figure 8. This image reference was used as the mean shape model, which is 

constructed by applying PDM from training images in each fold. The error for five iterations fitting phase can 

be seen in Table 1, with an average error is 0.023. The segmentation process is conducted by connecting the 

111 landmark points resulted from the fitting process. Figure 10 shows some examples of segmentation 

results, the red line represents the initial shape before the fitting process, and the green line represents  

the final shape after the fitting process. 
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Figure 9. Some shape models resulted from the model building phase 

 

 

 
 

Figure 10. Samples of the segmentation result 

 

 

Table 1. Cumulative error distribution (CED) score on 5-fold cross validation 

Fold 
Test 

image 

iter-1 iter-2 iter-3 iter-4 iter-5 average 

initial 
error 

final 
error 

initial 
error 

final 
error 

initial 
error 

final 
error 

initial 
error 

final 
error 

initial 
error 

final 
error 

initial 
error 

final 
error 

fold-1 Img_1 0.043 0.022 0.065 0.032 0.046 0.018 0.080 0.062 0.077 0.071 0.062 0.041 

Img_2 0.050 0.019 0.062 0.020 0.058 0.021 0.044 0.019 0.058 0.019 0.055 0.019 
Img_3 0.080 0.018 0.046 0.016 0.039 0.015 0.060 0.017 0.047 0.016 0.054 0.016 

Img_4 0.050 0.018 0.091 0.019 0.039 0.018 0.075 0.034 0.075 0.022 0.066 0.022 

fold-2 Img_5 0.066 0.015 0.068 0.017 0.054 0.016 0.067 0.016 0.060 0.024 0.063 0.017 
Img_6 0.047 0.039 0.045 0.017 0.059 0.036 0.065 0.023 0.047 0.015 0.053 0.026 

Img_7 0.027 0.020 0.060 0.037 0.059 0.022 0.035 0.017 0.035 0.017 0.043 0.022 

Img_8 0.068 0.017 0.039 0.016 0.047 0.016 0.030 0.016 0.045 0.017 0.046 0.016 

fold-3 Img_9 0.080 0.020 0.033 0.023 0.067 0.025 0.051 0.020 0.052 0.021 0.056 0.022 
Img_10 0.068 0.045 0.048 0.023 0.040 0.023 0.083 0.019 0.048 0.022 0.057 0.026 

Img_11 0.057 0.023 0.053 0.026 0.041 0.022 0.058 0.025 0.023 0.023 0.046 0.024 

Img_12 0.088 0.045 0.066 0.020 0.042 0.020 0.053 0.020 0.040 0.021 0.058 0.025 
fold-4 Img_13 0.049 0.016 0.052 0.017 0.039 0.016 0.019 0.016 0.039 0.017 0.040 0.016 

Img_14 0.023 0.020 0.075 0.050 0.073 0.018 0.036 0.021 0.096 0.059 0.061 0.034 
Img_15 0.055 0.022 0.062 0.052 0.050 0.015 0.070 0.027 0.074 0.013 0.062 0.026 

Img_16 0.060 0.013 0.049 0.013 0.074 0.024 0.047 0.013 0.036 0.014 0.053 0.015 

fold-5 Img_17 0.071 0.014 0.064 0.021 0.075 0.014 0.048 0.018 0.081 0.030 0.068 0.019 
Img_18 0.046 0.018 0.031 0.019 0.022 0.019 0.042 0.020 0.034 0.020 0.035 0.019 

Img_19 0.063 0.016 0.071 0.021 0.028 0.016 0.063 0.016 0.052 0.018 0.055 0.017 

Img_20 0.047 0.024 0.059 0.020 0.032 0.021 0.056 0.053 0.042 0.020 0.047 0.028 
average 0.057 0.022 0.057 0.024 0.049 0.020 0.054 0.023 0.053 0.024 0.054 0.023 
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As we mentioned before, the initial shape is the mean shape of the training images, which is used as an 

initial reference shape. Further, by using the landmark points definition for each region (see Figure 3) of the bone scan 

image, we can define four regions, namely head and spine region, chest region, proximal arms and clavicle region, 

and pelvis and proximal legs region. As this experiment applies the RLMS, we compare our experiment result with 

ASM [21], as used in Sadik et al. [15]. Both ASM and RLMS were categorized into CLM based fitting method.  

With the result, which is depicted in Table 2, we can see that our proposed segmentation system using RLMS 

appeared to have better performance with error=0.0.283. 
 

 

Table 2. CED comparison of RLMS and ASM 

Fold 
ASM RLMS 

initial error final error initial error final error 

fold-1 0.1572 0.1501 0.0485 0.0176 
0.1583 0.1681 0.0456 0.0196 

0.1156 0.1414 0.0471 0.0167 

0.0594 0.0133 0.0507 0.0138 
fold-2 0.1005 0.1092 0.0576 0.0199 

0.053 0.0214 0.053 0.0441 

0.0662 0.0245 0.0515 0.0369 
0.0965 0.112 0.0411 0.0167 

fold-3 0.0829 0.0654 0.0585 0.0207 
0.0331 0.0246 0.0654 0.0851 

0.0608 0.0191 0.0837 0.0633 

0.0629 0.0176 0.0626 0.0192 
fold-4 0.1274 0.1155 0.0465 0.0175 

0.0668 0.0184 0.0499 0.0383 

0.0523 0.0129 0.0378 0.0133 
0.0228 0.0124 0.0327 0.0137 

fold-5 0.0644 0.0164 0.0755 0.0145 

0.0434 0.0183 0.0907 0.0217 
0.1424 0.1423 0.0247 0.0164 

0.1065 0.1022 0.0605 0.0563 

average 0.08362 0.065255 0.05418 0.028265 

 
 

6. CONCLUSION 

In this article, we propose the whole-body bone scan image segmentation using the CLM-based approach. 

In that system, we apply the optimization strategy, namely RLMS that was shown to be efficient and straightforward. 

From the experimental result, we show that our proposed system achieves better performance than the commonly 

used CLM-based approach, which is the active shape model. With this promising segmentation result, we managed to 

prove that we succeed in obtaining a specific predefined anatomical region, which will be very useful in  

the detection of cancer lesions on the bone, which frequently appears in the form of metastases. 
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