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 Text mining is one way of extracting knowledge and finding out hidden 

relationships among data using artificial intelligence methods. Surely, taking 

advantage of different techniques has been highlighted in previous researches 

however, the lack of literature focusing on cybercrimes implies the lack  

of utilization of data mining in facilitating cybercrime investigations in  

the Philippines. This study therefore classifies computer fraud or online scam 

data coming from Police incident reports as well as narratives of scam 

victims as a continuation of a prior study. The dataset consists mainly  

of unstructured data of 49,822 mainly Filipino words. Further, 5 decision tree 

algorithms namely, J48, Hoeffding Tree, Decision Stump, REPTree, and 

Random Forest were employed and compared in terms of their performance 

and prediction accuracy. The results show that J48 achieves  

the highest accuracy and the lowest error rate among other classifiers. 

Results were validated by Police investigators where J48 was likewise 

preferred as a potential tool to apply in cybercrime investigations.  

This indicates the importance of text mining in the field of cybercrime 

investigation domains in the country. Further work can be carried out in  

the future using different and more inclusive cybercrime datasets and other 

classification techniques in Weka or any other data mining tool. 
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1. INTRODUCTION 

In this study, the concept of data classification is utilized in order to evaluate computer fraud or 

online scam data coming from incident record forms and written narratives of online scam victims in  

the Philippines. Classification is said to be the most popular technique [1] of finding a set of models that 

describes and distinguishes data classes and concepts [2, 3] for the purpose of being able to use the model to 

predict the class whose label is unknown [4]. According to E. B. B. Palad et al. [1], the main objective of  

the classification method is to correctly predict the target class for each situation in the information. 

Factually, there are several classification methods that are used to analyze information, most of which  

are implemented in Weka text mining tool namely, Bayesian network, fuzzy logic, decision trees,  

K-nearest neighbor (KNN), neural networks, and support vector machines (SVM). Despite the fact that there 

are many existing studies which impressed the use of data mining in the field of cybercrime investigations, 

there is absence or lack of studies that has been conducted in Philippine setting that applies text mining 

specifically on classification for unstructured texts. 

https://creativecommons.org/licenses/by-sa/4.0/
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Nevertheless, [1] ventures into data mining on a cybercrime data in the Philippines. It is considered 

as an initial attempt to exploit data mining techniques in the field of cybercrime investigations. In their study, 

the performance and prediction accuracy of three (3) different classifiers namely J48 decision tree, Naïve 

Bayes, and sequential minimal optimization (SMO) were evaluated using a relatively small online scam 

dataset consisting only of 14,098 attributes. Their results show that J48 classifier outperformed the other two 

classifiers using a set of evaluation metric. Such results were also validated through a Focus Group 

Discussion (FGD) wherein J48 decision tree classifier was said to be highly favored by the participants from 

the Philippine National Police-Anti Cybercrime Group (PNP-ACG). Participants also agreed that  

the analysis performed using the J48 classifier provides an opportunity for police investigators in possibly 

employing data mining in the field of criminal investigations in the country. Truly, based on such initial 

results, decision tree algorithm performs better than other methods. Even [5] argued that the advantage of 

using decision tree classifier as compared to other classification algorithms is that the tree can be visualized, 

understood and interpreted easily [6] as it has a tree-like structure. Other researchers also concluded that 

decision tree classifier is one of the efficient as well as popular classifiers [5, 7, 8]. 

Thus, the primary objective of this present study is to provide a significant improvement on  

the previous study of [1] based on the following identified research problems, as follows: the Filipino dataset 

used was relatively small; and the classifiers being compared namely Naïve Bayes, J48, and SMO were under 

different categories. Hence, the researchers aimed to evaluate and compare the performance of other decision 

tree classification algorithms as against J48 using a larger fraud dataset. Suffice to say that the the focus  

is shifted to decision trees. Primarily, the end goal is to assess if such algorithms can be effectively used in  

the country's data mining endeavors that may positively impact or at least contribute to criminal 

investigations. It is also hoped that the results of this study may be appended as a significant contribution to 

the country's dearth of scholarly works on data mining using cybercrime data. In passing, the paper  

is organized as follows: Section 2 provides the methods employed in conducting this research work including 

the dataset used; Section 3 presents the discussion of the results; and Section 4 concludes the work. 

 

 

2. RESEARCH METHOD 

Data mining has various techniques that include classification, clustering, regression, among others 

and are implemented in several data mining tools. This present paper however still exploited Weka as a tool 

and mainly focused on the classification technique. As a significant continuation of a prior study that used 

Weka, this research still utilized the pipe-lined system model presented in [9] and further exploited in [1]. 

This so-called pipe-lined system model is used to exploit the online scam incident reports, complaints,  

and statements as input, and the results of the classification process performed through utilizing several 

algorithmic models as output. Reseachers used various decision tree algorithms that are available in the Weka 

text mining tool which aid in classifying the online scam records. The online scam dataset contains instances 

or the classes and the attributes which help in the classification phase. Figure 1 illustrates this pipe-lined 

model and is further discussed in the succeeding sub-sections. 

 

 

 
 

Figure 1. Pipe-lined system 
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2.1.  Dataset used 

In this research work, researchers managed to gather online scam data with a total of 49,822 mainly 

Filipino words coming primarily from Police incident reports as well as narrative of online scam victims.  

This is one of the main problems motivating the researchers in pursuing this research as the previous study 

only evaluated a total of 14,098 words. Hence, researchers want to investigate the performance of  

the classification algorithms using a larger dataset. Further, according to a PNP-ACG report, online scams 

consistently topped the list of most common cybercrimes since the year 2013 when the PNP-ACG was 

established. In a Philippine Cybercrime Report, online scam topped as the most number of cybercrimes 

complaints since 2015 up to 2019, and which number doubled every year. Hence, online scam is still 

preferred as data to the exclusion of other cybercrimes. 

 

2.2.  Pre-processing phase 

Prior to converting the text files in a Weka-suitable format, the researchers manually pre-processed 

the data by removing sensitive personal information such as, but not limited to, names of victims, suspects, 

and reporting persons. Some English words were also converted to Filipino. In Weka, StringToWordVector 

filter was used to transform the string attribute to a set of attributes that represent the occurrence of words on 

a dataset [10]. StringToWordVector can be found under unsupervised attribute filter which was used in 

filtering text data for improved classification metrics. Using its filters, TFTransform when set to true will 

have the transformation term-frequency (TF) score representing textual data in a vector space be executed. 

However, some Filipino words like “ang”, “mga”, “sa”, and “at” are so common which occurs in almost each 

document. Applying the TF parameter, the documents which use the term „„ang” more frequently will 

incorrectly get more weight without giving enough weight to more meaningful but less common terms like 

“bayad”, “pera” and “balanse”, and others. Therefore, an Inverse Document Frequency (IDF) factor was set 

to true, to combine with TF to moderate the weight of terms that occur frequently in the document set and to 

increase the weight of terms that occur rarely [11]. 

Additionally, since there are attributes that appear more frequently in the dataset which actually do 

not provide significant or relevant information about a class, hence stopwords handler (indicated as 

Filipino.txt in Table 1) in Weka was used in order to determine whether a sub string in the text is an empty 

word. Contrary to the findings of [12] where it was concluded that there is no need of removing stopwords as 

StringToWordVector makes satisfactory choices with respect to the words, the authors in this present study 

maintain that it is important to avoid having these stopwords while using the classifier model, because 

stopwords if not being eliminated during the pre-processing phase can lead to a less accurate classification of 

Filipino fraud data. Further, in order to break a stream of textual content up into tokens, Alphabetic 

Tokenizer was also employed. Table 1 summarizes all the parameters that were applied on the fraud dataset 

using the StringToWordVector filter with their corresponding values patterned from the study of [1]: 
 

 

Table 1. StringtoWordVector parameter and values 
Parameter  Values  

TFTransform  False  

IDFTransform  True  

attributeIndices  First-last  
attributeNamePrefix  “ “  

doNotOperateOnPerClassBa sis  False  

invertSelection  False  
lowerCaseTokens  True  

minTermFreq  1  

normalizeDocLength  No normalization  

outputWordCounts  True  

periodicPruning  -1  

Stemmer  NullStemmer  
stopWordsHandler  WordsFormFile:Filipino.txt  

Tokenizer  Alphabetic tokenizer  

wordsToKeep  2,000  

 

 

After the pre-processing stage, the named entities were extracted and represented as an online scam 

record. Similar to the study of [1], the output after extracting the named entities is a vector space model also 

called as document x term matrix [13]. In such a model, each row represents a document, each column a 

term, and each element is the frequency (TF) or the term influence in the respective document (e.g., TF-IDF).  

The researchers further converted the data to numeric values into a binary form for the experiment, since 

there are instances that attribute will take a value 1 if the word or character is present in the dataset and 0 if it 

is not present in the dataset. Therefore, the numeric to binary filter was selected in order to convert all  
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the numeric values to binary. The next phase is creating a crime record in which each named entity (word or 

phrase) of the crime story is assigned into a corresponding online scam category. 

 

2.3.  Classification 

After cleaning the data, and in order to analyze the records (the last phase reflected in Figure 1),  

the classification process is performed to classify the online scam into the following: banking, boiler room, 

buy and sell, employment, imposter, investment, lottery, online game, and online romance scams. In this 

study, 5 different decision tree algorithms were utilized namely Decision Stump, Hoeffding Tree, Random 

Forest, REPTree, and J48, each having been briefly discussed in Table 2. 
 

 

Table 2. Brief description of decision tree algorithms used 
Decision Tree Description 

Decision stump Reference [2] defined a decision stump as a model consisting of a one-level 

decision tree. It is characteristically used by combining it with a booster 

algorithm [14, 15]. Such algorithm does regression (based on mean squared 

error) or classification (based on entropy) [16]. Furthermore, decision stumps 

have a robust nature that allows them to work well with large datasets and helps 
algorithms to make better decisions about the variables [17]. 

Hoeffding tree An incremental, all-time decision tree induction algorithm that is said to learn 

from large information streams, assuming that the distribution generating 
examples does not differ over time [14]. 

Random Forest  A mixture of tree predictors [18] where each tree depends on the arbitrary 

vector values sampled individually and with the same allocation for all trees in 
the forest [19]. Random Forest can classify large datasets with high accuracy, a 

fast algorithm, and is said to not suffer from over-fitting problems which also 

has the ability to estimate missing data [20]. 
REPTree A quick decision tree learner [14]. Constructs a decision or regression tree 

utilizing data gain or variance and prunes it adopting reduced error pruning 
(with back fitting ) [21].  

J48  An algorithm that produces a decision tree using C4.5 algorithms to add an ID3 

algorithm and is used for classification. It is the improved version of the C4.5 
decision tree classifier and has become a famous decision tree classifier [22].  

 

 

Classification is a two-step process [23] involving building the classification model using training 

data and, the model usage [24]. Hence, in this research, the algorithms are tested using the training set  

and the k-fold cross validation methods. For using the training set means building up a model wherein  

the method is trained using all available data and then applies the results on the same input data collection [23].  

On the one hand, argued that it is through cross-validation that the model built by a classification algorithm  

is validated as utilizing it means that the data will be divided into folds wherein some folds will be used as  

a testing set whereas the remaining folds for training. In this paper, a 10-fold cross-validation was utilized 

wherein the data were divided into 10 groups [24]. Hence, the process of testing and calculating accuracy  

is repeated 10 times such that each of the folds is given a chance to be trained and tested [22]. In order to 

compute the overall classification accuracy of an algorithm, Weka gets the average of the testing accuracy 

obtained from all the 10 rounds [25]. 

In order to evaluate the results and compare the performance of the decision tree algorithms in classifying 

the fraud dataset, the researchers are guided by these evaluation metrics namely: build time (in seconds), prediction 

accuracy, Kappa statistic, error rates, true positive (TP) rate/recall, and false positive (FP) rate. A classifier yields  

a good performance when low error, namely mean absolute error (MAE), root mean squared error (RMSE), relative 

absolute error (RAE), and root relative squared error (RRSE), is indicated in the result [5, 26, 27]. In addition,  

a classifier that yields Kappa Statistics closest to 1 will be evaluated as the most efficient classifier. Kappa Statistic 

measures the relationship between classified instances and true classes whose value usually lies between 0 and 1. 

When a classifier returns a value of 1, it means there is a perfect relationship between instances and classes while  

the value of 0 means random guessing. Moreover, a high TP rate and Recall means the model has returned most of  

the relevant results as these metric show the correctly classified instances [8, 28]. FP rate, on the one hand, reports 

instances incorrectly labelled as correct instances. 

Lastly, to rationally confirm the viability of the 5 classification algorithms utilized in this research,  

the results were presented to police investigators and a trial court judge through FGD which was a four-hour exercise. 

A total of 5 participants were carefully selected by the researchers as only those police officers investigating 

cybercrimes and have extensive background in computing were allowed to participate. Further, it is also important to 

note that prior to the conduct of the validation activity, participants were briefed by the researchers that they had to 

sign a disclosure agreement stating that they had agreed to allow the use of whatever information they provide all 
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throughout the validation exercise. Participants were entrusted to assess or evaluate the performance of the chosen 

decision tree algorithms as well as the Weka tool software. 

 

 

3. RESULTS AND DISCUSSION 

This section presents the data classification as performed on the gathered online scam dataset 

through different decision tree classifiers implemented in Weka. Results were further validated through FGD 

being participated by police investigators. 

 

3.1.  Classification results using the training set 

The training set was first implemented to build the model. The results as reflected in Tables 3 and 4 

show that among the five decision tree algorithms, Random Forest got the highest prediction accuracy with 

99.51% followed by J48, REPTree, decision stump, and Hoeffding tree with 92.65%, 78.92%, 66.18%,  

and 58.82% respectively. Although, it took Random Forest 2.27 seconds to build the model as compared to  

the other classifiers which took lesser building time. Looking at the error rates shown in Table 3, Random 

Forest and J48 record the least errors which could translate that both classifiers have almost the same average 

prediction error.  
 

 

Table 3. Performance parameters and their values using the training set 
 

Parameters 

Algorithms 

Decision Stump 
Hoeffding 
Tree 

J48 REPTree 
Random 
Forest 

Time to Build the Model (in secs)  0.07  1.45  1.29  0.57  2.27  
Kappa Statistic  0.2632  0  0.8742  0.6037  0.9919  

Mean Absolute Error  0.1196  0.1381  0.0277  0.0777  0.0406  
Root Mean Squared Error  0.2445  0.2604  0.1177  0.197  0.0865  

Relative Absolute Error  86.58%  100%  20.071%  56.23 %  29.42%  

Root Relative Squared Error  93.90%  100%  45.21 %  75.68 %  33.22 %  
Prediction Accuracy  66.18%  58.82 %  92.65 %  78.92 %  99.51 %  

 

 

For Kappa Statistic, however, it was Random Forest which obtained the best results having a value 

of 0.995, that is, nearest to the value of 1; as researchers translate 1 as the perfect Kappa Statistic value which 

translates to a perfect classifier. In addition, Table 4 shows that Random Forest returns most of the relevant 

data as it garnered a TP Rate and Recall of 0.995 followed by J48‟s 0.926. This could translate that both 

algorithms correctly classified instances the most as compared to the other three classifiers. Suffice to say 

that based on the training set results, Random Forest outperformed the other classifiers as J48 a close second. 
 

 

Table 4. Summarized result on the training set 
Algorithms TP Rate FP Rate Recall 

Decision Stump  0.662 0.436 0.662 

HoeffdingTree  0.588 0.588 0.588 

J48  0.926 0.078 0.926 

REPTree  0.789 0.212 0.789 

RandomForest  0.995 0.007 0.995 

 

 

3.2.  Classification results using cross-validation 

A. K. Mishra et al. [29] suggests that k-fold cross-validation is recommended for estimating 

accuracy since its concept is to give an opportunity to make a prediction for each instance of the dataset. 

Through cross-validation, the unseen instances in training set were able to be seen and classified. Hence, in 

this present study, results obtained from using cross-validation are to be considered in assessing or evaluating  

the 5 decision tree algorithms as it gives an accurate estimate of the performance than the training set. 

Therefore, using the 10-fold cross-validation, the classifier which yields the highest values for prediction 

accuracy and recall with the least error rates is to be considered the most efficient algorithm in classifying  

the available online scam dataset [1, 11]. As per the results obtained with 10 different training folds, it is 

revealed that J48 got the highest prediction accuracy with 67.16% and a Kappa statistic of 0.4143 leaving 

other classifiers behind as shown in Table 5. It also recorded the least mean absolute error and relative 

absolute error. REPTree and decision stump both recorded prediction accuracy of 62.74%, while Random 

Forest and Hoeffding Tree resulted 62.74% and 60.29% accuracy rates, respectively. Furthermore, as shown 

in Table 6, all the classifiers yields almost the same TP Rate and Recall values; but with J48 having the best 
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values; a Recall of 0.659 and TP rate of 0.672. At this point, it is evident that J48 algorithm outperforms all the 

other classifiers. 
 

 

Table 5. Performance Parameters and their values using cross-validation (10 folds) 
 

Parameters 

Algorithms 

Decision 

Stump 

Hoeffding 

Tree 
J48 REPTree 

Random 

Forest 

Time to Build the Model (in secs)  0.08  1.38  1.28  0.58  2.25  

Kappa Statistic  0.1633  0.0826  0.4143  0.2351  0.0799  

Mean Absolute Error  0.1252  0.0923  0.081  0.1186  0.1147  

Root Mean Squared Error  0.2548  0.2907  0.2553  0.2549  0.2334  

Relative Absolute Error  90.45%  66.69%  58.48%  85.65%  82.83%  
Root Relative Squared Error  97.79%  111.58%  98.01 %  97.86 %  89.59 %  

Prediction Accuracy  62.74 %  60.29 %  67.16 %  62.74 %  60.78 %  
 

 

Table 6. Summarized result on cross-validation (10 folds) 
Algorithms TP Rate FP Rate Recall 

Decision Stump  0.627 0.536 0.603 

HoeffdingTree  0.603 0.590 0.590 

J48  0.672 0.279 0.659 

REPTree  0.627 0.414 0.627 

RandomForest  0.608 0.548 0.608 

 

 

3.3.  Validation results 

During the exercise, participants were prompted to peruse the instructions and explanations and 

indicate the degree to which they agree or disagree with each the provided statement using the survey scale, 

such as: SA–strongly agree; A–agree; N–neutral; D–disagree; and SD–strongly disagree. They were given a 

validation instrument prepared by the reseachers which inquired the participants to agree on  

(a) whether it is easy to understand the predictive model created by the classification algorithms; (b) whether  

the analysis performed and visualizations provided offer an opportunity for police investigators to appreciate 

the importance of employing data mining tools in the legal and criminal investigation domains; (c) whether 

the analysis and results provided by the classification are accurate in terms of patterns and insights about 

online scam; and finally, (d) whether the generated results produced can be applied and useful in cybercrime 

investigations. Such activity was conducted at the Hall of Justice in Iligan City, Philippines. The score of 5  

is being set to SA, 4 for A, 3 for N, 2 for D, and lastly, 1 for SD. 

Overall, in statement (a), J48 and Hoeffding tree got tied up in ratings that these 2 algorithms were 

easy to understand which translates that the results as well as the decision trees generated and visualized by 

these algorithms perked the interests of the investigators as no further explanations were needed from  

the researchers while participants were evaluating the results. Corrolarily, J48 scored the highest in statement 

(b) as participants strongly agreed with such statement, while other algorithms were just rated scores of either 

a Disagree or Neutral. In statement (c), only J48 was rated with a score of 5 or Strongly Agree unlike other  

the algorithms which were rated as Agree as well as a Disagree score. Lastly, participants strongly agreed 

that J48 generates results that may be applied and useful in cybercrime investigations. 

 

 

4. CONCLUSION 

This work was motivated by the initial study of which had somehow opened the opportunity of 

exploring data mining techniques in the cybercrime investigation field in the Philippines. Such study 

evaluated the performance and prediction accuracy of three classifiers under different categories namely J48 

decision tree, Naïve Bayes and SMO using only 14,098 mainly Filipino words. Their results show that J48 

classifier outperformed the other two classifiers as it resulted with the highest accuracy rate and the least 

error rates. J48 classifier was likewise favored by police investigators during their validation exercise.  

Prior to this work and as to the authors‟ personal knowledge, no studies had been conducted or concluded 

exploiting cybercrime data and data mining in the country. 

In this present study, the researchers veer towards evaluating the performance of different decision 

tree classification algorithms namely Decision Stump, Hoeffding Tree, REPTree, and Random Forest to see 

which decision tree algorithm would give the best result as compared to the previously used J48 classifier; 

using a larger online scam dataset with 49,822 Filipino words collected from police incident reports  

and narrative reports from fraud victims. Based on the prediction accuracy results as well as the classification 

errors, the researchers conclude that even with a larger online scam dataset, J48 classifier still generates  
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the best performance and is the most efficient in learning and classification as against other decision tree 

algorithms implemented in Weka. The reason for its best performance is that it correctly classifies  

the instances with 67.16% using the 10-fold cross validation leading to correct classification of the data as 

opposed to decision stump and REPTree both with 62.74% accuracy and random forest (60.78%)  

and Hoeffding tree (60.29%). 

Another reason for its best performance is that J48 also obtains the highest values in terms of TP 

rate and Recall, as it generates the least amount of errors as well. Having the highest precision rate, it can be 

concluded that the model generated by the J48 classifier returns more relevant data than irrelevant data as 

against the other classifiers. Since J48 also obtains the highest recall, it can be concluded that the model it 

generated has returned most of the relevant results. Further, results of the validation exercise conducted still 

reveal that J48 is most favored by police investigators even when it is being compared to other decision tree 

algorithms. As future works, the researchers recommend comparing the results obtained from these decision 

tree algorithms by applying appropriate weight allocation and subsequent ranking approaches in order to rank 

those classifiers being evaluated. Classification of cybercrime data may also be further conducted using other 

available data mining tools or techniques. 
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