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 The existing photoacoustics (PA) imaging systems showed mixed 

performance in imaging characteristic and signal-to-noise ratio (SNR).  

This work presents the use of an in-house assembled PA system using  

a modulating laser beam of wavelength 633 nm for two-dimensional (2D) 

characterization of biological tissues. The differentiation of the tissues in this 

work is based on differences in their light absorption, wherein the produced 

photoacoustic signal detected by a transducer was translated into phase value 

that corresponds to the peak amplitude of optical absorption of tissue namely 

fat, liver and muscle. This work found fat tissue to produce the strongest PA 

signal with mean ± standard deviation (SD) phase value = 2.09 ± 0.31 while 

muscle produced the least signal with phase value = 1.03 ± 0.17. This work 

discovered the presence of stripes pattern in the reconstructed images of fat 

and muscle resulted from their structural properties. In addition,  

a comparison is made in an attempt to better assess the performance of the 

developed system with the related ones. This work concluded that the 

developed system may use as an alternative, noninvasive and label-free 

visualization method for characterization of biological tissues in the future. 
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1. INTRODUCTION 

Imaging is a process of producing a visual representation of a scanned object through the combined 

technology of electromagnetic beam illumination and signal detection. The action or process of producing  

an image of a part of human body using radiographic techniques has greatly advanced in clinical settings, 

which primarily focus is on diagnostic and therapeutic use to verify the origins of an injury. Over the years,  

a variety of imaging techniques are available for the same purpose such as magnetic resonance imaging 

(MRI), X-ray computed tomography (CT), ultrasound and spectroscopy. These imaging techniques are used 

to generate visual representation of body parts and to aid in clinical diagnosis. However, the operation of 

most of these machines can be time consuming and expensive. In addition exogenous dye is often required in 

MRI and CT to enhance contrast in imaging.  

PA technology was discovered in year 1880 by A. G. Bell through his photophone invention [1].  

This is a hybrid method that combines optical and acoustic approach. Unlike ultrasound technique, which 

exhibits a tradeoff between imaging resolution and penetration depth [2], PA offers greater specificity with  

the ability to detect hemoglobin, lipids, water and other light-absorbing chromophores, compounded with 

greater resolution than its ultrasonic counterpart. The PA strategy is attainable by the use of light source of 

non-ionizing laser pulses for illumination of biological tissues. The absorbed light energy produced thermal 

expansion within the medium, and hence generation of acoustic waves. This thermal waves propagation  
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is affected by the (arrival) elevation angle and velocity of the wave signal; both of which parameters 

influence phase shift of the wave detected using a transducer [3]. These attributes lead to the use of PA 

imaging in a wide variety of applications in clinical study [4], preclinical research and basic biology for 

studying cancer [5], cardiovascular disease [6], abnormalities of the microcirculation [7] and other 

conditions. However the current market available PA systems are bulky, costly (costing about USD 230,000), 

and some of them may require the use of contrast agents for enhanced visualization, which preparation 

process can be complicated [8]. To date, there are mixed reports on the performance of these system. 

Erfanzadeh et al. [9] reported a relatively low SNR of approximately 14 dB for ex vivo imaging of mouse ear, 

while Upputuri et al. [10] stated the need of using indocyanine green (ICG) for 3 cm depth imaging of 

chicken breast tissue. A similar work by Manojit et al. [11] showed a near real time imaging (~3 s) of small 

field of views (FOVs) to produce images of SNR 15 dB. It is, therefore, the aim of this work to investigate 

the feasibility of using a low cost laboratory-assembled PA system for marker-free 2D optical 

characterization of biological tissues, and to better understand where our system stands in the current field. 

 

 

2. RESEARCH METHOD 

2.1.  Photoacoustic system and poultry sample preparation 

The employed PA imaging system consists of three main parts: temporally modulated laser source, 

ultrasonic transducer and two-dimensional (2D) positional stage. A continuous wave laser source (model  

no. R-30993, Newport Corporation) of center wavelength, λ, 633 nm was allowed to pass through  

an acousto-optic modulator (AOM) (model: Gooch & Housego 2910 series) producing trains of laser pulses 

for illumination of the chosen sample. The AOM controlled by a radiofrequency (RF) driver shown in Figure 1  

was driven by a frequency of 15 MHz generated using a function generator (model no. YOKOGAWA FG 39). 

 

 

 
 

Figure 1. Light modulating system, (a) Laser source, (b) RF driver,  

(c) Acousto-optic modulator (AOM) 

 

 

Meanwhile the detection of PA signals produced by the investigated sample was by an unfocused 

ultrasonic linear array transducer (model no. LF 2000K1, central frequency, fc = 2 MHz) connected to an 

oscilloscope (model no. HMO2022, Rohde & Schwarz) for acquisition and offline transfer of data.  

This system was developed at a fractional cost of the existing systems (costing approximately USD 9,200).  

It was reported in [12] that both the optical and acoustic characteristics of muscle samples resemble to that of 

human breast and breast tumors. In addition the International Chicken Genome Sequencing Consortium 

revealed chickens to share 60 % of the same genes as that of humans [13], therefore samples of muscle, fatty 

tissue and liver were extracted from chicken carcasses and used in the present investigation. The thickness of 

these prepared samples was approximately 3 mm while the width was 2 cm similar to the transducer diameter 

shown in Figure 2. This selection of the sample width is following the findings by [14] as an important 

parameter for optimal longitudinal attenuation measurement. The investigated samples were submerged in 

water, which is used as the medium of propagation between transducer and the sample, and the separation 

between the transducer and investigated tissue sample was approximately 2 cm. In this study, twenty sets of 

experiments were conducted on each considered tissue sample at different location to give a total of 60 sets 

of data. The acquisition time for each point was approximately 2 seconds. 
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2.1.  Data collection and analytical technique 

The signal phase shift is based on thermal wave propagation, where its amplitude has strong 

dependence on surface temperature, which can be affected by environmental reflections, non-uniform heating 

and emissivity variations [15]. The PA signals collected from each experiment were recorded and extracted 

for the Ф value from the peak of the manipulated signals. Each reconstructed image was given from a series 

of 20 sampled signals collected at a rotating resolution of 18
o
/step (i.e. spatial resolution of 2 mm),  

and at 10 s delay between each measurement. The transducer attached to the shaft of the rotational motor 

(model no. ELLO 8 Thorlabs) to provide 2D measurement of data and an illustration of the system deployed 

for this research study is shown in Figure 2. 

 

 

 
 

Figure 2. The collection of spatial-resolved PA signals via rotation motion of transducer 

 

 

The peak phase value was extracted for all angles for construction of 2D image data. The processing 

of the measured acoustic signals is by Fast-Fourier transform (FFT) technique, which allows transformation 

of time domain signals to that of frequency domain. This study used fft function available in MATLAB 

software (version 2016a) given in (1) to give both real (re) and imaginary parts (im) of the acoustic signals, 

using which the Ф value is calculated. The latter is corresponded to the absorption properties of  

the investigated medium, wherein the higher the value the greater the light absorption. 

 

(Ψre, Ψim) = fft (ψ(t)) (1) 

 

where ψ(t) represents acoustic wave in time domain, while Ψre and Ψim represent the frequency domain signal 

in the form of complex number. The Ф value, in unit of rad, is given by the peak of re and im components of 

the transformed data as follows: 

 

Ф = tan
 
(

im

re




) 

 

(2) 

 

Using the data collected, the maximum Ф value of each signal was calculated and arranged in matrix 

format before spline interpolation (interp2, interpolation factor of 10) was performed for interpolating and 

smoothing the image data. The results of the proposed technique were evaluated using image quality metric, 

specifically the SNR. The SNR is calculated as the logarithmic ratio of mean signal, IM, to its SD, ISD, given  

in (3) in units of decibel (dB). It was reported in Konrad et al. [16] that excellent image quality yields SNR 

value of 32 dB, while 26 dB can be expected to be of acceptable quality. 

 

SNR = 10 log (IM / ISD) (3) 

 

 

3. RESULTS AND DISCUSSION 

Example of PA signals at arbitrarily selected sequential angle of 0
o
, 90

o
, 180

o
 and 270

o
 recorded for 

liver tissue according to the method described in section 2.2 is shown in Figure 3. These data were then 

arranged in two-dimensional arrays producing 2D Ф images of liver calculated from (2). The same procedure 

was repeated for fat and muscle samples. An example of the processed image from signals collected from fat, 

liver and muscle are shown in Figures 4, 5 and 6, respectively. These Ф images comprised of spatial 
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distribution of pixels of different intensity, which corresponded linearly to the detected acoustic strength.  

It must be mentioned that the results presented in this work is valid for the transducer model employed herein 

as it was reported that the shape of transducer (most often available in either rectangular or round shape), 

even of the same operating frequency and diameter, would exhibit a different beam detection profile [12, 17, 18]. 

 

 

  
  

(a) (b) 

  

 
 

  

(c) (d) 

  

Figure 3. PA signals recorded for liver tissue at rotating angle of, (a) 0
o
, (b) 90

o
, (c) 180

o
, (d) 270

o
 

 

 

  
  

Figure 4. Smoothed reconstructed image for signals 

collected from fat sample 

Figure 5. Smoothed reconstructed image for signals 

collected from liver 

 

 

It is interesting to note that even though without the use of a contrast dye, lines and stripes pattern 

can be visibly seen in fat and muscle samples shown in Figure 4 and Figure 6. Chicken fats are of lipids with  

the presence of cuticle on its surface, and comprises of a thin outer layer overlaying the thick inner layer [19] 

while the patterns observed for muscle sample are likely due to the presence of fibre and collagen tissues 

available in abundance on the poultry surface. Since liver exhibits smooth surface, these patterns were not 

observed in the corresponding sample. Meanwhile possible explanations on the variation in the distribution 

of PA signals are provided in the following using result from liver as an example. The intensity of value 

ranges in between 0-0.30 rad in Figure 7 is likely caused by the reflections of light from the water tank glass, 

which values vary gradually over the range of angles subtended by the transducer [20, 21]. This was verified 

using an experiment on a diffuser glass submerged in water to create scattering effect within  

the medium before measurement of PA signal and phase value was calculated (results not shown here).  
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It was found that the mean and SD of Ф value under this condition was calculated as 0.20 ± 0.08 rad, which 

range is similar to that hypothesized as light reflections in this work. Meanwhile high intensity region in 

Figure 7 is corresponded to the region that has the greatest light beam exposure, which leads to the highest 

light absorption. This produced the highest calculated Ф signals ranged between 0.80-1.20 rad. There are also 

regions, which phase values range between 0.40-0.80 rad, corresponded to acoustic signals produced through 

weaker light intensity exposure coupled with the scattering effects. 

 

 

  
  

Figure 6. Smoothed reconstructed image for signals 

collected from muscle sample 

Figure 7. Effects of light absorption and scattering 

on the calculated phase value 

 

 

From the results in Figures 4-6, fatty tissues were found to produce the largest average PA signals 

with mean ± SD of Ф = 2.09 ± 0.31, whereas muscle produced the least signals with Ф = 1.03 ± 0.17.  

These differences in phase value range measured for fat and muscle sample can be contributed by  

the differences in the refractive index, n, of these samples given by 1.45 and 1.39, respectively. In addition to  

the differences in light scattering upon light incident at the samples surface, the velocity of propagating light 

waves reduces (at different rate depending on n value) in these media; this renders different light absorption 

by the tissues, thus variation in phase value calculated from the reflected signals. Previous work in [22] 

reported a complete separation of the image contrast can be reached based on the absorption and n value of  

the investigated sample. Regions with different n value would enhance the visibility of the edges in  

the constructed image; therefore fine details of sample structure could be observed without the use of stains 

and contrasts agents. Figure 8 showed the SNR value calculated for Ф images of liver, muscle and fatty 

tissues. Based on the results, the overall mean and SD of SNR is calculated as 29.37 dB ± 3.93 dB, which 

falls within the acceptable range. The results also showed that there are ten from 60 sets of Ф data that 

produced SNR below 26 dB, which can be contributed by artifact motion during data acquisition, hence 

giving a probability rate of good image quality (SNR ≥ 26 dB) of 83.33 %. 

 

 

 
 

Figure 8. The mean and standard deviation (SD) of SNR of Ф data of liver (red line),  

muscle (turquoise line) and fat (blue line) 

 

 

The results in Table 1 showed a compound influence of pixel size and scanning time on FOV size; 

this is in good agreement with that observed in [24-26] who also suggested an inverse relationship between  

the viewing size and spatial resolution. Other factors that could influence spatial resolution performance of  

a PA imaging system include magnification of focal spot [27] and the light beam pulse width [28]. A shorter 

pulse width is reported to produce an improved spatial resolution image [29], which is supported by  

the observations in the results from [26] in Table 1 as compared to that obtained in this work.  
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Table 1. A comparison of the performance of the developed system with other related works 
Parameters Previous works [ref] This work 

SNR 14-18 dB [9]  

29.37 ± 3.93 dB 115-175 dB [10] 
~15-18 dB [11] 

~17 dB [23] 

Spatial resolution 
(pixel size) 

0.836 ×2.1 µm - 2.9 × 10.1 µm [9] 2000 µm 
 285 - 435 µm [10] 

180 - 384 µm [11] 

Scanning time 
(in seconds, s) 

10 - 30 s [10] 40 s 
3 - 30 s [11] 

5 s [23] 

Field of view 4.6 mm × 3.7 mm [9] 44 mm × 20 mm 
4.2 mm × 5 mm [10] 

4.2 mm × 4.2 mm [11] 

6 mm × 4.2 mm [23] 
Pulse width 50 ns [9] 30 ns 

136 ns [10] 

136 ns [11] 

5 ns [23] 

 

 

Since light scattering and absorbing (optical properties) in a turbid medium (e.g. biological tissue) 

leads to a reduce in the energy density [30], the amount of light reaching the detector (in reflectance mode) 

reduces significantly with an increase in imaging depth. The latter renders a decrease in SNR [31], unlike  

the works in [12] on PA imaging of horse hair phantom (of negligible thickness), most of the previous works 

in Table 1 showed a relatively consistent and lower SNR performance as compared to that obtained in  

this work (mean SNR of 29 dB) ranging between 14-18 dB for measurement on biological tissues. 

Nonetheless it must be mentioned that SNR performance would generally increase with FOV [32] at the price 

of a longer imaging time [33]. 

It has been noted in [34] that fc and bandwidth of the employed ultrasound transducer is a significant 

factor affecting spatial resolution of an image. This could possibly explain the reason for the coarse pixel size 

identified in this works (using fc of 2 MHz) as compared to the others such as [12] that used 2.25 MHz  

and 5 MHz. Unlike the study in [23] that used a focused transducer, the use of unfocused transducer in  

this work has the added advantage of a larger viewing angle, hence an increased viewing area (of up to  

44 mm×20 mm). The results presented herein showed the feasibility of the developed system for noninvasive 

assessment of optical, physiological and structural properties of the investigated samples with reasonably 

acceptable performance, implying its potential application as a label-free technology using phase information 

of acoustic signal for biological tissues visualization [35]. 

 

 

4. CONCLUSION 

The PA imaging technology presented in this work shows a great potential in medical imaging as 

this technology is able to produce images with acceptable imaging performance and SNR as compared to  

the existing systems. This work used a low cost PA imaging system for marker-free characterization  

and differentiation of biological samples based on the variations in their light absorption, which can be 

translated through the amplitude of the detected PA signals. This system is able to reveal the structural 

properties of the biological tissues with a relatively good overall mean and SD SNR of 29.37 ± 3.93 dB  

and cover a considerably large imaging area. The future works include the use of this photoacoustic system 

for physiological and pharmacological study by exploiting the photo-thermal properties of chromophores. 
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