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 The authors have attempted to influence an embedded square split ring 

resonator (SSRR) response in a stacked non-homogeneous substrate to 

demonstrate a quad-band antenna. The purpose is to produce multiband 

operations of a microstrip patch antenna. The highlighted factor is the effect 

of embedding an SSRR and the differing relative permittivity of the substrate 

on the side length of the SSRR. The analysis shows that a non-homogeneous 

dual substrate patch produces multiple bands compared to a single substrate 

patch antenna without any parameter change. A dual substrate antenna 

fabricated using FR4 and Rogers RT/Duroid 5880 copper clad sheets with a 

dimension of 85.6x54x0.908 mm3 (0.314λ0x0.198λ0x0.003λ0). The antenna 

resonates at 1.1, 2.45, 3.65 and 5.25 GHz in the L-, S- and C-bands. It is 

possible to employ the patch antenna in WLAN (dual-band) and WiMAX 

applications and suitable for mobile broadcast service at 1.1 GHz. The 

authors compare the simulated and measured results of a prototype in the 

article. The maximum measured gain is 5.48 dBi at 1.1 GHz and 4.025 dBi at 

3.65 GHz. The measured bandwidth is 60 MHz (1.2%) at 5.25 GHz. 
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1. INTRODUCTION  

The need to develop novel antennas for modern generation electronic devices poses a challenge to 

antenna engineers. Creating new and innovative designs to support wideband/multiband operations is 

essential. Performance in a compact size is a crucial factor in making an antenna appealing. The various 

WLAN bands, WiMAX and RFID, are of interest for many applications concerning mobile electronic 

devices, item identification, tracking, access control and other such applications.  

A report is available on a microstrip antenna on an FR4 substrate of 0.8 mm thick with wideband 

characteristics and decent gain values. The antenna operates from 0.8 to 6.05 GHz and has a bandwidth of 

5.25 GHz bandwidth [1]. A meandered stripline feed and H/U-type slits on the radiating plane are used in this 

design along with defected ground to obtain broadband characteristics. In literature, we see a great deal of 

effort in studying the various approaches to improve bandwidth in a compact form factor and facilitate a 

patch antenna's operation in multiple bands. The metallic conductors' magnetic behaviour report 

revolutionised devices' design in radio frequency and optical applications [2]. The authors discuss an antenna 

using a triangular split ring resonator [3] with a low measured gain. A triple-band antenna is reported with a 

reconfigurability feature and split ring resonator in [4] with a gain of 3 dBi. A T-shaped structure loaded with 

meander line stubs on a small area operates in multiple bands (L/S/C bands) and has decent bandwidths and a 

https://creativecommons.org/licenses/by-sa/4.0/
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maximum gain of 3.4 dBi [5]. H. Xiong et al. [6] discusses a UWB antenna using metamaterials with 267% 

impedance bandwidth and excellent gain. However, the antenna radiation performance is affected in some 

frequencies due to high levels of cross-polarisation. Many instances of the use of complementary split ring 

resonators in several investigations are available. 

Research highlights their efficacy in improving microstrip patch antennas' performance [7], [8]. A 

circular patch antenna loaded with CSRR operates in two frequency bands producing circular polarisation is 

presented in [9]. R. O. Ouedraogo et al. [10] and R. O. Ouedraogo and E. J. Rothwell [11] discuss an SRR 

metallic ring embedded between substrate material of the same type (Rogers RT/Duroid 5870 and Rogers 

RT/Duroid 5880, respectively). The article discusses the advantage of using an SRR to reduce the size of the 

circular path without compromising on the overall radiation performance [10]. However, the reported gain is 

small due to miniaturisation.  

J. C. Xing Zhao and Youngki Lee [12] employs an SRR array embedded between two FR4 

substrates to reduce the antenna's size while retaining the fractional bandwidths. M Shailesh Kumar and 

Prabhugoud I Basarkod [13] discusses a stacked multiple substrate antenna working in the UHF band 

producing decent radiation characteristics. A couple of articles discuss antennas using stacked and bonded 

homogeneous substrates. The article does a comprehensive analysis of a CPW-fed antenna with resonators on 

different substrate materials leading to miniaturisation [14]. Though the radiation characteristics have 

improved, this antenna's peak gain even after employing the enhancement technique is -1.22 dBi. A stacked 

multi-structure circular patch with air dielectric operating in the UWB frequency is presented in [15] with a 

measured bandwidth of 3.68 to 13.8 GHz (115.8%). C. D. R. R. Prasad Rao and Budumuru Srin [16] 

provides proof for improving a microstrip antenna's bandwidth with a multilayer substrate. An article 

presents AMC's use at 5.8 GHz for WBAN application to reduce the back lobe [17]. Effective use MTM with 

photonic bandgap structures to improve isolation between the transmit and receive section demonstrated by 

the authors [18]. Using slots and defective ground structure to suppress harmonics is verified using a 

prototype based on numerical analysis to achieve the desired result [19]. A THz regime novel high-gain 

metasurface (acting as an AMC) polyimide on-chip antenna with a microstrip feed line in the bottom 

substrate with a gain of 8.15 dBi is presented by M. Alibakhshikenari [20]. 

M. Alibakhshikenari et al. [21] discusses a 2x2 microstrip patch antenna with super-wide frequency 

bandwidth. The inclusion of slot combined with metamaterial loading provides a fractional bandwidth of 

142.85%, improved gain and enhanced radiation efficiency. The authors present a novel slot antenna with 

two excitation ports for an extended bandwidth in [22]. An H-shaped slit provides isolation between the 

radiators as per design. Metasurfaces intelligently used to suppress mutual coupling between adjacent 

radiating elements in MIMO antennas [23]. The reduction of surface wave aids in improving the bandwidth 

and reduces the cross-coupling factors in the radiated beam. Substrate integrated waveguide and metasurface 

feature to reduce the unwanted mutual coupling in a 34x34 array antenna operating in the Terahertz band 

[24]. A decoupling slab with an embedded MTM electromagnetic bandgap structure and a fractal isolator 

enhance isolation between the radiators discussed in [25] and [26].  

In this proposed work, the focus is on a microstrip patch antenna working in L-, S- and C- bands of 

the frequency spectrum with an embedded square split ring resonator (SSRR) array. The SSRR array is 

between two substrates of different relative permittivity values. The article emphasises using embedded 

SSRR in a dual dielectric non-homogeneous substrate to operate in multiple bands. The main advantage of 

using non-homogeneous substrates is reducing the side lengths of the resonating metallic inclusions. The 

detailed discussions on the matter follow in the subsequent sections. The proposed design uses bonded 

substrates to enhance the radiation characteristics; hence, the practical volume is small compared to an 

antenna employing a superstrate. The designed antenna resonates at four different frequencies in L-, S- and 

C- bands. The gain, bandwidth, reflection coefficient, and radiation pattern of the fabricated antenna closely 

match the simulated values.  

The designed antenna is suitable for use in WLAN (802.11a/b/g/n/j/ac/ax) and WiMAX (802.11y) 

applications. The 1.1 GHz frequency is also suitable for federal and non-federal aviation service and mobile 

broadcasting services. Ansys HFSS software, a full-wave EM solver, is used to carry out the design's 

numerical analysis with an extensive parametric study. Open source software Veusz used to prepare the 

graphical presentations in the paper. 

 

 

2. DUAL SUBSTRATE ANTENNA WITH EMBEDDED SSRR ARRAY 

2.1.  Dual substrate patch antenna design 

As a convention, most of the approaches to design and fabricate patch antennas have delved into single 

substrate antennas due to ease of fabrication and related economics. One of the popular substrates for development is 

Flame Retardant Epoxy Glass substrate FR4. Rogers Corporation manufactures substrates for antenna applications 
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with some superior performance characteristics under their RT/Duroid product line. Researchers have used these 

substrate materials to develop their designs extensively. The design of multi-substrate antennas can be with bonded 

structures [13], [14], and [16]. It could also be a superstrate [7], [27], [28].  

In this paper, a dual substrate antenna designed with FR4 (εr=4.4, tan δ=0.02) and Rogers 

RT/Duroid 5880 (εr=2.2, tan δ=0.00019) as the substrate material is studied. The dimension of the antenna is 

85.6x54x0.908 mm3 (0.314λ0x0.198λ0x0.003λ0). The top layer is of FR4, which is 0.4 mm thick (Layer 1), 

and the bottom layer is RT/Duroid 5880, which is 0.508 mm thick (Layer 2). The first stage of development 

was designing the patch antenna on a single substrate FR4 material of thickness 0.8mm. Figure 1(a) shows 

the antenna schematic. This antenna resonated at only one frequency (3.9 GHz). In the next step, the addition 

of 0.508 mm thick layer of Rogers RT/Duroid 5880 done below the FR4 layer (0.4mm thick). This structure 

yielded resonance at 2.45/3.6/5.21/5.93/6.16 GHz. In the next step, an SSRR array incorporated between the 

substrate layers leading to a change of the resonant bands to four frequencies (1.1/2.45/3.65/5.25 GHz) and at 

the same time suppressing the undesired frequency bands. The later sections in the article have a detailed 

discussion on this aspect.  

The patch dimensions are calculated based on formulas for deriving the same as described in [29]. 

The transmission line model adopted to calculate the dimensions of the patch antenna. The effective relative 

permittivity (𝜀𝑟𝑒𝑓𝑓
) of the antenna when the ration w/h>1 is given in (1) 

 

𝜀𝑟𝑒𝑓𝑓
=

𝜀𝑟+1

2
+

𝜀𝑟−1

2
[1 + 12

ℎ

𝑤
]

−1∕2

 (1) 

 

The width of the patch (wp) is related to the resonant frequency (fr), the velocity of light in free space (v0) and 

relativity permittivity (εr) by the relationship in (2), 
 

𝑤𝑝 =
𝑣0

2𝑓𝑟
√

2

𝜀𝑟+1
 (2) 

 

Consider the dominant mode of excitation (TM10) of the patch antenna, and the patch length is given by (3) 

as, 
 

𝑙𝑃 =
𝑐

2𝑓𝑟√𝜀𝑟𝑒𝑓𝑓

 (3) 

 

The design utilises inset feed to obtain wideband impedance matching. The calculation of the inset 

length (y0) into the patch utilising in (4), 
 

𝑅𝑖𝑛(𝑦=𝑦0) = 𝑅𝑖𝑛(𝑦=0)𝐶𝑜𝑠2 (
𝜋

𝐿𝑃
𝑦0) (4) 

 

Where, Rin (y=y0)=50 Ω and Rin (y=0) is the impedance at the edge of the patch. 

After obtaining the initial values, the dimensions iteratively modified to obtain the best possible EM 

solver results for the desired band of frequencies. The list of dimensions of the antenna and SSRR is in  

Table 1. Figure 2(a) depicts the top radiating patch of the antenna on FR4. Figure 2(b) shows the SSRR 

array's layout in the intermediate layer etched on the Rogers RT/Duroid 5880 substrate. Figure 2(c) shows the 

image of the antenna fabricated using the photolithographic process with the radiating patch and the SSRR 

array using the two-substrate materials. The two layers are stacked one over the other and bonded with glue 

to obtain a firm contact between the surfaces. 
 

 

 
 

Figure 1. The evolution process of development of the embedded SSRR patch antenna (dimensions not to 

scale), (a) Patch antenna on a single substrate (FR4), (b) Patch antenna on dual substrate (FR4 and Rogers 

RT/Duroid 5880) (c) Patch antenna on a dual substrate with embedded SSRR 
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(a) (b) 

  

 
 

(c) 

 

Figure 2. Embedded SSRR patch antenna, (a) The top layer with radiating patch and substrate dimensions,  

(b) The SSRR layer on Rogers RT/Duroid 5880, (c) Fabricated dual substrate microstrip patch antenna 

displaying the radiating patch and the intermediate SSRR array layer 

 

 

Table 1. Dimensions of the antenna and SSRR 
Parameter Dimensions (mm) Parameter Dimensions (mm) 

Subs_L 85.6 Sl2_W 9 

Subs_W 54 Sl3_L 8.4 
Patch_L 71 Sl3_W 1.2 

Patch_W 49 y0 25 

h1 0.4 l1 8.5 
h2 0.508 l2 6.9 

Sl1_L 25 W 0.5 

Sl1_W 7 s 0.3 
Sl2_L 0.8 g 0.6 

 

 

2.2.  Design of square split ring resonator 

A metamaterial unit cell's performance and an array have been described based on the Kramers-

Kronig relationship in [30]. Parameter retrieval based on the S-parameters of a unit cell metamaterial is 

discussed in detail [31], [32]. The above work explores structures exhibiting tuneable magnetic conductivity 

built from nonmagnetic conducting sheets. H. Chen et al. [33] refers to S-shaped resonators acting as left-

handed materials without the aid of a wire to generate double negative values of EM parameters. 

The etching of a 3x3 SSRR array on the Rogers RT/Duroid 5880 substrate's top surface is as per the 

design in the proposed work. Available literature talks about different types of resonant structures like 

circular, rectangular, triangular and other such shapes Shalini Sah and Malay R Tripath [34], Chaturvedi and 

Raghavan [35] to cite a couple of research articles. The reason for selecting a square resonator is that it 

requires a smaller dimension (side length) compared to a circular or any other such shape. Studies show that 

aligned split gaps of the rings in the same direction generates dual resonances in close range. Proximity 

double resonance is otherwise is not possible in the complementary orientation of the split gaps. As shown in 

(5) gives the average length of the conductor lavg [36],  

 

𝑙𝑎𝑣𝑔 = 4[𝑙1 − (𝑁 − 1)(𝑠 + 𝑊)] (5) 
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𝜀𝑟
𝑡 =

[𝜀𝑟1+𝜀𝑟2+2]

4
 (6) 

 

where 𝜀𝑟
𝑡 is the average relative permittivity of the dual substrate layer [37], N is the number of turns of the 

rings. The expression for effective relative permittivity (εrsub) of the substrates (7), 

 

𝜀𝑟𝑠𝑢𝑏 = 1 +
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 [

ℎ

2𝜋(𝑤+𝑠)
] (𝜖𝑟

𝑡 − 1) (7) 

 

With the help of the above equations, description of the capacitance and inductance of a metallic inclusion on 

a dielectric substrate is possible by the below-given as [36], 

 

𝐶𝑆𝑆𝑅𝑅 =
𝑁−1

2
[2𝑙1 − (2𝑁 − 1)(𝑤 + 𝑠)]𝐶0 (8) 

 

𝐶0 = 𝜀0𝜀𝑟𝑠𝑢𝑏

𝐾(√1−𝑘2)

𝐾(𝑘)
 (9) 

 

𝐿𝑆𝑆𝑅𝑅 =
𝜇0

2

𝑙𝑎𝑣𝑔

4
(4 ⋅ 86) [𝑙𝑛 (

0.98

𝜌
) + 1 ⋅ 84𝜌] (10) 

 

𝑓𝑟 =
1

2𝜋√𝐿𝑆𝑆𝑅𝑅⋅𝐶𝑆𝑆𝑅𝑅
 (11) 

 

Where h=h1 + h2 is the total height of the substrate. ρ is the fill factor for the metallic inclusion on the 

dielectric substrate (ρ=(N-1) (w+s)/[l1–(N-1) (w+s)], K is the elliptic integral of the first kind. The variable k 

defines the lower integer number of the ratio [s/(w+s)]. LSSRR is the inductance, and CSSRR is the capacitance 

of the metallic inclusion, fr is the resonant frequency of the SSRR structure based on the equivalent quasi-

static model defined by the equations above. The calculated value of fr as per (11) is 2.315 GHz. The average 

permittivity of the dual substrate stack calculated as per (6) is 2.15 (𝜀𝑟
𝑡). 

Figure 3 shows the unit cell in a waveguide medium set up to extract the S-parameters of the SSRR 

to evaluate the EM response, and the tutorial describes the method for extraction of S-parameters of a unit 

cell. The tutorial highlights the procedure for retrieval of permeability, permittivity and refractive index [38]. 

The extraction of the EM parameters is possible by the Nicholson-Ross-Weir (NRW) method or 

transmission-reflection (TR) method (two popular techniques of a couple of methods available). We make 

use of (12) and (13) to compute the refractive index (n) and impedance (z) of the metamaterial,  

 

𝑛 =
1

𝑘𝑑
𝑐𝑜𝑠−1 [

1

2𝑆21
(1 − 𝑆11

2 + 𝑆21
2 )]  (12) 

 

𝑧 = √
(1+𝑆11)2−𝑆21

2

(1−𝑆11)2−𝑆21
2   (13) 

 

Once the refractive index and impedance is known, the magnetic permeability (μ) of the SSRR is calculated 

by (14), 

 

𝜇 = (𝑛 × 𝑧)  (14) 

 

 

 
 

Figure 3. Design of unit cell of SSRR for extraction of S-parameters using waveguide setup 
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The plot of permeability response of the SSRR is in Figure 4. The real part of the structure's 

permeability is negative at 2.362 GHz and 3.628 GHz exhibiting the single negative material characteristic. 

The permeability response is nearly zero for a considerable range of frequencies in the 5-5.5 GHz band, as 

seen in Figure 4(a). Figure 4(b) describes the response of the SSRR in a configuration of a three-cell unit and 

3x3 array. The mutual coupling factor between the rings contributes to the extended behaviour of the three-

cell unit's permeability response and 3x3 array. 

The use of two different substrates has resulted in smaller dimensions of the metallic inclusion's side 

length. A discussion on dielectric composition's effect on resonant frequencies of a metallic inclusion in the 

conference article [39] highlights the importance of dielectric composition. Embedding the SSRR structure 

between the two layers helps lower the resonance frequency than the same etched on a single substrate. The 

resonant frequency for a split ring resonator with a side length of the outer ring l=8.5 mm for a single cell is 

tabulated in Table 2 for different substrate material selections.  

 

 

  
  

(a) (b) 

 

Figure 4. Permeability response of SSRR, (a) Response of single unit cell, (b) Response of 3-cell unit and 

3x3 array 

 

 

The resonant frequency values obtained indicate that the effect of non-homogeneous substrates on 

the resonant frequency is considerable. The result would be more profound at higher frequencies. Table 2 

compares the proposed SSRR configuration and SRR response in terms of their resonance frequencies. As 

the reaction of metallic inclusions clearly illustrates that the SSRR produces dual resonance compared to 

SRR due to the combined effect of per unit capacitance and the gap capacitance. SRR produces a single 

lower resonant frequency for the given side length dimension. Hence, it is advantageous to incorporate in 

cases where a single resonance is required. Whereas the proposed SSRR produces dual resonance for the 

same structure due to the combined capacitive effect as stated above. Further size reduction is possible by 

selecting one material with higher relative permittivity (~10) and the other with a lower relative permittivity 

(~2). A 40% reduction in the resonance frequency in a few cases is achievable [39]. 

 

 

Table 2. The frequency response of proposed SSRR and SRR on different substrate materials 

Substrate Type 
Resonant frequency proposed SSRR (GHz) 

Resonant Frequency SRR (GHz) 
fr1 fr2 

Rogers RT /Duroid 5880 3.22 5.188 2.854 

FR4 2.578 4.3 2.284 

FR4 + RT/Duroid 5880 2.362 3.628 2.034 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Reflection coefficient (S11) 

A commercial solver based on the finite element method (FEM) (Ansys HFSS) assesses the antenna 

design numerically. Figure 5(a) depicts the antenna's numerical response under different material 

consideration for the design. The first case of design is when the antenna is on a single substrate (FR4) 
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material (0.8mm thick). The antenna produces resonance at 3.9 GHz only. The second case is the response 

depicted for a dual substrate antenna made up of FR4 and Rogers RT/Duroid 5880 without embedded SSRR. 

The total thickness of the antenna substrate is 0.908 mm. We see in the second case that the antenna 

resonates at six frequencies (1.1/2.45/3.6/5.21/6.16 GHz) even though the radiating patch dimension is 

unaltered. It is due to the change in the effective relative permittivity of the substrate. The third case is that of 

a dual substrate antenna with embedded SSRR. The antenna resonates at four frequencies (1.1/2.45/3.65/5.25 

GHz). In comparing the second and third case, the suppression of the frequency band's upper end (6.16 GHz) 

is due to the embedded SSRR. It is due to the attenuation induced by the real part of the embedded SSRR 

array's permeability (refer to Figure 4). Another factor is the improved reflection coefficient levels of the 

antenna with the SSRR compared to the one without SSRR due to metallic inclusion.  

The reflection coefficient S11 of the fabricated dual substrate patch antenna with the embedded 

SSRR was measured using an Anritsu vector network analyser (VNA-S820E). Figure 5(b) shows the plot of 

the measurement. The measured reflection coefficient values closely match the numerical values at the 

various resonating frequencies. The magnitude of the measured reflection coefficient is slightly lower 

compared to the numerical results. Due to the inaccuracies of alignment and bonding of the two-substrate 

layers, cable/connector losses lead to the degradation in reflection coefficient values. 

 

 

  
  

(a) (b) 

  

 
 

(c) 

 

Figure 5. Reflection coefficient response (S11), (a) Results of the numerical analysis of the antenna structure 

with single substrate FR4, dual substrate without SSRR and dual substrate with embedded SSRR,  

(b) Comparison of the measured and simulated reflection coefficient of the dual substrate patch antenna with 

embedded SSRR, (c) Parametric analysis of slot length highlighting variations in S11 

 

 

Table 3 tabulates the prototype antenna's measured bandwidth and the antenna's simulated 

bandwidth with and without an SSRR array. It is a proven fact that the bandwidth of a conventional 

microstrip patch antenna is directly proportional to the substrate's thickness. The antenna's impedance 
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bandwidth is lesser than other designs discussed in the literature, mainly due to two reasons. First, the 

antenna uses a relatively thin substrate (0.908 mm) compared to different models, which use 1.6 mm or 

higher thickness values. Second, the proposed design does not incorporate bandwidth enhancement 

techniques like meander lines or defective ground structure. We obtain better bandwidths for the non-

homogenous structure compared to a single substrate antenna of comparable design parameters.  

Parametric study of the antenna carried out by varying the slot length Sl1 (varied between 22 mm to 

28 mm). The results of the parametric analysis for the reflection coefficient is in Figure 5(b). The parametric 

study yielded the best results for a slot length of 25 mm for Sl1.  

 

 

Table 3. Tabulation of the measured and simulated bandwidth of the dual substrate patch antenna with 

embedded SSRR array 
Frequency 

(GHz) 

Measured Bandwidth 

(With SSRR) (MHz) 

Simulated Bandwidth 

(With SSRR) (MHz) 

Percentage Bandwidth (With 

SSRR) (Measured) (%) 

Simulated Bandwidth 

(Without SSRR) (MHz) 

1.1 9 8 0.82 6 

2.45 18 22 0.74 21 

3.65 45 42 1.23 20 

5.25 60 55 1.2 60 

 

 

3.2.  Gain and efficiency of the antenna 

The antenna response characterised in an anechoic chamber. The radiation measurement is done in a 

chamber of dimension 7x4x3 m3. A distance of 5.5 m separates the AUT from the source that is a broadband 

horn antenna of linear polarisation. The antenna exhibits decent gain levels in the four frequency bands of 

interest. The plot of simulated and measured antenna gain is in Figure 6(a). Table 4 tabulates the gain values 

at the different resonant frequencies. The highlight of the design is decent gain values at different resonant 

frequencies by a thin substrate structure. It is due to the use of a dual substrate and the embedded SSRR. The 

use of low loss substrates like Rogers RT/Duroid 5880 and the SSRR enhances the patch antenna's gain.  

The plot in Figure 6(b) depicts the microstrip patch antenna's radiation efficiency with embedded 

SSRR, and the efficiency of the antenna is 47% at 3.65 and 5.25 GHz. The efficiency at 1.1 and 2.45 GHz is 

42.5 and 41%, respectively. The dual substrate antennas (with and without SSRR) shows a marked 

improvement in efficiency compared to the single substrate antenna printed on FR4 substrate (9% at  

3.9 GHz). The use of second substrates aids in improving the overall radiation efficiency across the various 

resonance frequencies.  

 

 

  
  

(a) (b) 

 

Figure 6. Characteristics of the patch antenna with embedded SSRR array, (a) Simulated and measured the 

gain of the antenna, (b) Plot of the radiation efficiency for single substrate (FR4), dual substrate without 

SSRR and dual substrate with SSRR structures 
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Table 4. Simulated and measured gain of the dual substrate patch antenna with embedded SSRR at various 

resonant frequencies 
Frequency 

(GHz) 

Gain (dBi) Frequency 

(GHz) 

Gain (dBi) 

Simulated Measured Simulated Measured 

1.1 5.52 5.48 3.65 2.818 4.025 
2.45 0.796 1.223 5.25 1.458 2.822 

 

 

3.3.  Current distribution on the antenna 

Figure 7 shows the surface current distribution obtained from the HFSS simulation. The current 

distribution shows how the structure surface is excited by the current. The major contributors are the slots 

etched to provide longer current paths and the feedline of the patch. The current concentrates along the length 

of the slots (Sl1, Sl2 & Sl3). We observe that the current intensity is higher along the edges of slot Sl1 at 

almost all the frequencies. We position the slots Sl2 & Sl3 selectively by design to influence the current 

distribution at 1.1 & 3.65 GHz. The current concentration towards the feed line and slot edge is attributed to 

the patch's embedded resonator array. The resonators are excited at 2.45 GHz and 3.65 GHz and influence 

the current pattern on the patch largely.  

 

 

 
 

Figure 7. Surface distribution of current on the radiating surface of the patch antenna, (a) 1.1 GHz, 

(b) 2.45 GHz, (c) 3.65 GHz ,(d) 5.25 GHz 

 

 

3.4.  Radiation pattern 

Figure 8 in appendix, depicts the radiation pattern in the antenna's E and H planes at 1.1 GHz, 2.45 

GHz, 3.65 GHz, and 5.25 GHz. The radiation pattern of the antenna exhibits a good correlation between the 

simulated and measured values. The pattern is dipolar in H-plane at 2.45 GHz, whereas it is omnidirectional 

in all other resonant frequencies (both E & H). The kinks/distortions observed in the measured value can be 

because of the coaxial connector's soldering with the patch, surface currents induced in the metallic 

inclusions in the multilayer structure influencing the radiation. The pattern measurement constrained by a 

protruded mounting mechanism hindering the values in particular radial.  

 

3.5.  Discussion 

A list of a comparative study of a few of the research articles available concerning specific key 

parameters like frequency bands, substrate height, gain and number of substrates is in Table 5. The 

comparison brings out the uniqueness of the proposed structure visa-a-vie the ones published to date. The 

designed antenna operates in multiple frequency bands without alteration in the radiating patch's physical 

dimension. Secondly, it exhibits proper levels of gain on a thin substrate across all the resonant frequencies. 

Thirdly, an embedded SSRR array suppresses undesired frequencies and enhance radiation performance in 

other frequency bands. The most crucial factor is the technique of alignment and bonding of the two 

dielectric substrates. There is a chance of a shift in resonant frequency if the substrates are not appropriately 

aligned. 
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Table 5. Comparison table of antenna performance and design parameters of a few articles available in the 

literature and proposed work (*measured value) 

Reference Frequency Bands (GHz) 
Thickness 

(mm) 
No of 
Layers 

Max Gain 
(dBi) 

Feed Type Configuration 

[1] 0.8-6.05 0.8 1 5.35* Meander Line Single Substrate 

[3] 2.4/3.5/5.2/5.8/8.2 1.6 1 3.49 CPW Single Substrate 

[4] 0.5-2.69/3.2-4.44/4.82-6.6 1.6 1 3.4 Inset Single Substrate 

[7] 8.64 
1.5+1.3+1.

3 
3 3.24 Coaxial Superstrate 

[11] 2.45 2.34 2 ~ -1 Inset Bonded 

[12] 0.5/2/4/5.4 1.5748 2 NA Inset Bonded 

[14] 1.9 2.307 2 -1.22* CPW Bonded 
[16] 1/2 5, 8 2 7.41 Inset Bonded 

[18] 9.25-11 1.6 1 7.85* Microstrip line Single Substrate 

[20] 350-385 1 2 8.15* Microstrip line Dual CMOS Tech 

[21] 20-120 0.13 1 15.11 Microstrip line Single Substrate 

[22] 0.5-6.4 1.6 1 5.3* Microstrip line Single Substrate 

[25] 9.12-9.16 1.6 1 NA Microstrip line Single Substrate 

[26] 
8.7-11.7/11.9-14.6/15.6-

17.1/22-26/29-34.2 
1.6 1 9.15* Microstrip line Single Substrate 

[27] 5.8 1.48+1.48 2 8.0* Corporate Superstrate 

[35] 5.5/6.81/9.31 3.2 2 6.76* Inset Bonded 
Proposed 1.1/2.45/3.65/5.25 0.908 2 5.48* Inset Bonded 

 

 

4. CONCLUSION  

The article does a detailed study of a microstrip patch antenna made of non-homogeneous substrate 

materials with an embedded SSRR array operating in 1.1, 2.45, 3.65 and 5.25 GHz bands. The numerical 

analysis and measurement of the prototype have shown very close agreement in the various performance 

parameters. The antenna's evolution from a single substrate to a dual substrate with embedded SSRR 

indicates improved performance indices of the vital parameters related to the antenna. The dual substrate 

feature aids in reducing the side length of the SSRR and makes it capable of resonating at lower frequencies, 

thereby bringing about a kind of frequency reconfigurability and compactness. The antenna produces 

maximum gain measured is 5.48 dBi at 1.1 GHz and the maximum bandwidth obtained is 60 MHz (1.2%) at 

5.25 MHz on a thin substrate (0.908 mm). The proposed antenna produces output only in the required bands 

and suppresses unwanted resonances. The dual substrate antenna's performance in L-, S- and C- bands is 

encouraging and can be used in various wireless applications. Broadside radiation is noted in 1.1/3.65/5.25 

GHz, while dipolar radiation pattern in H-plane at 2.45 GHz. The proposed design reduces 48% in patch 

length and 55% in patch width of the antenna. 

 

 

APPENDIX 

 

Figure 8. Radiation pattern of the microstrip patch antenna with embedded SSRR, (a) E-plane radiations at  

1.1 GHz, 2.45 GHz, 3.67 & 5.26 GHz, (b) H-plane radiations at 1.1 GHz, 2.45 GHz, 3.67 & 5.26 GHz 

(legend-solid line-measured, dotted fine-simulated) 
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Figure 8. Radiation pattern of the microstrip patch antenna with embedded SSRR, (a) E-plane radiations at  

1.1 GHz, 2.45 GHz, 3.67 & 5.26 GHz, (b) H-plane radiations at 1.1 GHz, 2.45 GHz, 3.67 & 5.26 GHz 

(legend-solid line-measured, dotted fine-simulated) (continue) 
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