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 This paper presents a cache performance model for embedded systems. The 

need for efficient cache design in embedded systems has led to the exploration 

of various methods of design for optimal cache configurations for embedded 

processor. Better users’ experiences are realized by improving performance 

parameters of embedded systems. This work presents a cache hit rate 

estimation model for embedded systems that can be used to explore optimal 

cache configurations using Bourneli’s binomial cumulative probability based 

on application of reuse distance profiles. The model presented was evaluated 

using three mibench benchmarks which are bitcount, basicmath and FFT for 

4kb, 8kb, 16kb, 32kb and 64kb sizes of cache under 2-way, 4-ways, 8-ways 

and 16-ways set associative configurations, all using least recently-used 

(LRU) replacement policy. The results were compared with the results 

obtained using sim-cheetah from simplescalar simulators suite. The mean 

errors for bitcount, basicmath, and FFT benchmarks are 0.0263%, 2.4476%, 

and 1.9000% respectively. Therefore, the mean error for the three benchmarks 

is equal to 1.4579%. The margin of errors in the results was below 5% and 

within the acceptable limits showing that the model can be used to estimate hit 

rates of cache and to explore cache design options. 
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1. INTRODUCTION 

The need for cache memory arises as a result of the speed of processor being higher than that of the 

main memory. It is worthy to note that the memory wall problem [1], [2] in general purpose computer also 

affects embedded systems. The problem is that at a point an increase in processor speed does not contribute 

much to performance of computer systems [3]. This is because the net increase in performance of a computer 

system do not depend on processor alone but also dependent on other factors such as memory speed, input/ 

output device and the bus configuration. Moreover, increasing processor speed means increasing the clock 

rate which has an adverse effect in term of power dissipation [4]. The major setback in computing system 

performance is the improvement in the speed of memory devices such as DRAM [5] which is very slow 

compared to processor. According to Wilkes [3], for two decades now, there have not being any major 

improvement recorded in the area of memory speed. It means that processor has to waste most of it clock 

cycle waiting to be serviced by the main memory. In effect, this memory speed limits the performance of 

computer systems drastically. This has led to researches on how to improve the memory speed in order 

increase the speed of computer systems. The formal way of closing this speed gap is by using cache memory 

between the main memory and processor. In this quest, designers started using cache memory which is 
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smaller by faster memory device made from static random access memory (SRAM) technology to copies 

locations of memory in other to service the processor faster on request [6]. A typical embedded systems level 

one L1, data cache memory is found in Arm Cortex A7 [7]. It has only two levels of cache memory but with 

split data and instruction cache. The level one L1, data cache organization is set associative with least recently 

used replacement policy. When a processor requests a memory location, that location is first search for in the 

cache and if it is not in cache, the location will be fetched from main memory. This main memory location is 

first copied into the cache before loading to the processor. Next time when this same memory location is 

requested, it will be serviced from the cache thereby hiding the real speed or reducing the latency of the main 

memory. This process helps to improve the speed of memory systems. 

The idea behind the success of cache memory is locality of reference in a program [8]-[11]. Program 

execution usually favours portion of the main memory within a short duration of time. According to Eklov et 

al. [12], the factors that contribute to this locality patterns are sequential execution of instructions, loops in a 

program, and nature of data items stored. First, principle of locality states that program tends to reuses 

memory location in which it had accessed and that is called temporary locality [13], [14]. Secondly, it states 

that it is also likely that location of the memory close to the recently referenced memory location may be 

referenced in near future and it is called spatial locality [15]. These two properties of locality are what drive 

the effectiveness of cache memory. The block of main memory which is referenced is copied into the cache 

line following the mapping procedures. At the time that the cache is full any memory location requested by 

the processor which is not in cache means that an already existing memory block in the cache have to be 

evicted so that the recently referenced block will be copied into the cache. The procedure in which a block of 

main memory already in the cache is selected for eviction from the cache and to be replaced by the most 

recent request is called cache replacement policy [16]. The major replacement policy that are mostly used are 

least recently used (LRU), random and first-in first-out (FIFO) replacement policies. The choice of 

replacement policies used by computer architecture is dependent on the performance optimization 

requirement and cost. Another important aspect of cache memory design is its degree of associativity with 

the main memory. The procedure in which the block of main memory is mapped into the line of the cache is 

called cache associative [17]. Some of the well-known standard caches mapping techniques are set 

associative, direct mapping and fully associative mapping [18]. Cache associative is an important aspect of 

cache performance criteria. So, it is worthy to note that cache hit rate and miss rate of cache is dependent on 

the type of associative of the cache. 

In order to calculate or predict the locality and performance of cache memory analytically through 

any performance parameter like cache hit rate, latency and effectiveness, a metric that is microarchitectural 

independent and also representative of the workload is required. Reuse distance and reuse time [19], [20] are 

two most popular metrics that is used in prediction of cache performance. Reuse distance is the number of 

unique intervening memory accesses between the use and the reuse of a particular memory location while 

reuse time is the number of total or absolute memory accesses between the use and reuse of such memory 

location. During program execution, processor makes series of reference to various memory locations that is 

required for successful execution of the program. The flow of this memory location reference is called 

memory reference stream. As the processor makes this reference, a collection of the memory location 

referenced is called memory profile [6] which is very important input parameter in cache analysis. Memory 

profile is useful as stack distance or reuse distance of a memory stream is obtained from it. The locality of 

cache is determined through the analysis of program memory reference stream. If a memory reference stream 

exhibits a significant temporary locality (e.g., once accessed, references to the same address location is likely 

in near future) or spatial locality (e.g., once accessed, references to the neighbouring address locations is 

likely in near future), the cache hit rate hence overall performance will be high [6]. According to Zhong [21], 

the smaller the reuse distance of memory location of an application, the more the application obeys the 

principle of locality. This give rise to overall increases in cache performance but if the reuse distances are 

large there is high probability that the application will yield low hit rate in cache thereby reducing the cache 

performance. In this study, the metric used was reuse distance because it describes well the locality of 

memory accesses and is closely related to the behavior of LRU policy which allowed us to assess how well 

the cache is utilized. Furthermore, reuse distance is machine-independent and deterministic, making it an 

ideal metric for used in performance modeling. 

The earlier background for analytical cache model is from the work of Mattson et al. [8], when they 

developed a stack counting algorithms that processed accesses of an applications to memory locations and 

their reuse as distance of the first access of that memory location in the stack to the its present access called 

stack distance or reuse distance. Their interest was not to calculate or model cache behavior but to analyze 

the locality of an application, as a result they did not come up with any cache model but their result is 

background to this present study. According to Enbody and Brehob [22], they proposed an analytical cache 

framework based on stack distance distribution to describe the behavior of cache. They developed model to 

describe the locality of a reference stream and another one used to quantify cache locality and behaviour. It is 
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important to the present study because the cache model proposed in this study is an extension of their second 

model. In the work of Pan and Jonsson [20], they proposed an analytical cache framework based on absolute 

reuse time distribution to describe the behavior of cache. 

The study used Pin [23] to trace the workload which are SPEC CPU2006 [24] benchmarks to get the 

reuse time which is feed into their model for evaluation. Their study pointed out that profiling stack distance 

of an application incurs much overhead so they resorted to low overhead metrics of absolute reuse distance or 

reuse time. Beckman and Sanchez [25] also proposed a new probabilistic cache model based on absolute 

reuse distance for high performance replacement policies. The model used reuse times which were collected 

using hardware monitor and models replacement policies as abstract ranking functions. Their model is an 

age-based model which comprises of age, eviction and hit distribution models. Another study by Chen et al. 

[10] which focused on the optimal multi-level cache design used reuse distance metric to model cache 

performance. In their work, they predicted the miss rate of multi-level fully associative cache with LRU 

replacement policy using reuse distance metric. They assumed that fully associative LRU cache can be used 

as representative of set associative cache as there is no significant difference in their performance giving the 

same cache size. Just like the present study, they used Pintool to collect metrics and also compared their 

results with results from Simplescalar simulation; their average error is 0.71% (L2) and 1.1% (L3). Gysi et al. 

[26] proposed an analytical cache model algorithm that predict the miss and hit rate of fully associative with LRU 

cache. They called their algorithm Haystack, and it make used of calculated program reuse distance to predict 

performance just like the present study. The study used Polybench in evaluation of their model and compared 

results with results from Uniprocessor simulator. They also validated their results using measures results 

from PAPI [27]. The evaluation errors in their model were within 0.6% to the measured results. 

This study will serve as useful tool for cache performance analysis as it will help computer 

architects, researchers and students to have insight into cache behavior under different configurations. It will 

also help them in design decision for system optimization and management. Equipped with proper 

understanding of program locality and how to extract reuse distance from memory profile of a program, 

prediction of cache performance will now become easier. The aim of this present study is to presents a model 

of cache performance for embedded systems and the specifics objectives include:To develop a mathematical 

cache hit rate estimation model; To characterize the locality of embedded system workloads; To evaluate the 

model using the metrics from characterized embedded system workloads; and To compare the behaviour of 

the model with that of standard cache simulator by applying the same characterized embedded workloads and 

cache configurations parameters. 

 

 

2. PROPOSED CACHE HIT RATE ESTIMATION MODEL 

To model cache behaviour, the aim is to use reuse distance obtained using MICA pintool to generate 

our model. This means that given a memory trace, T, for every reuse distance, ‘d’ one would want to know 

the probability of cache hit. It is obvious that in set associative cache with LRU replacement policy that the 

reuses of memory block for a distance that is less than the associativity of the cache is a hit. This is because 

for any memory block to be replaced in cache there must be up to ‘A’ number of distinct access to that set 

that contain memory block where ‘A’ is the degree of associative of the cache. Therefore, the hit ratio of all 

the accesses with reuse distance d which is less than or equal to ‘A-1’ is the cumulative fraction of accesses 

with reuse distance up to ‘d’ in the total of accesses. 

Now for reuse distance, d, which is equal to ‘A’ and above, the problem is how to determine the hit 

rate given that the reuse distance obtained is not set reuse distance but for the entire cache memory. Due to 

the fact that we don’t have access to set reuse distance, it is right to estimate the probability that for a given 

cache set X, which contain memory block E, that the reuse of memory block E, is a hit. To be able to 

estimate that, certain assumptions have to be made to make this study tractable. The following assumptions 

were made: The study assumed that memory accesses are mapped into various caches line randomly; 

Mapping of cache lines into various caches sets are assume to be random; and Reuse distance distributions 

are identically and independently distributed (iid). There is need to define certain concept that will help in 

making the derivation of this cache model less cumbersome. If during the entire run of a program that 

processor reuses some memory blocks with reuse distance d, the fraction of memory accesses with reuse 

distance d, will be the fraction memory accesses with d, to the total memory accesses. Now, reuse distance 

distribution Rd, is defined as the fraction of memory accesses with exactly reuse distance d, is given by (1). 

 

𝑅𝑑 =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑟𝑒𝑢𝑠𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒,𝑓𝑑

𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠,𝑇
  (1) 
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where fd=frequency of reuse distance equal to exactly d, and T=total no. of memory accesses. Cumulative 

Reuse distance R (i≤d) is also defined as the probability of obtaining at most reuse distance d, in the entire 

memory accesses, as in (2): 

 

𝑅(𝑖≤𝑑) = ∑ 𝑅𝑑
𝑑
𝑖=0  (2) 

 

In full associative cache, (2) gives the hit rate of the cache when d is equal to B-1 where B is the 

number of the block in a cache. In set associative cache, (2) is used to determine the hit rate at reuse distance 

d, that is less or equal to A-1 where A is the associativity of the cache. In this study, the aim is to model set 

associative L1 cache of which some of the reuse distance will be equal or more than the associativity of the 

cache. 

Let’s start by finding the probability of cache access being in cache set X, the probability of an 

access being in set X is X1=1/S and the probability of not being in set X is X0=(1-1/S). So, assuming that X1 is 

probability of success ρ and probability of failures X0 is q=(1- 1/S). This can be stated in form of binomial 

probability by finding the probability of obtaining a success after d (reuse distance) using Bernoulli trials as 

shown in (3): 

 

P(k=Success) = ∑ (𝑛

𝑘
)𝑝𝑘𝑞𝑛−𝑘

𝑑

𝑘=0

  (3) 

 

where k=1, 2, 3…d, (k is number of success) 

In memory block, reuses of cache line which the reuse distance is more than the associativity of the 

cache, the reuse can be cache hit only and only if the number of intervening accesses in cache set X is at most 

equal to A-1. To calculate the probability of hit in reuse distance that is greater than or equal to the 

associativity A, the probability of obtaining at most A-1 unique intervening accesses in cache set X is 

obtained. This can be derived in form of cumulative binomial probability distribution function as shown in (4). 

 

P(k≤A−1) = ∑ (𝑑

𝑘
)𝑝𝑘𝑞𝑑−𝑘

𝐴−1

𝑘=0

  (4) 

 

Substituting for ρ and q in (4) gives (5): 

 

P(k≤A−1) = ∑ (𝑑
𝑘

) (
1

𝑆
)

𝑘

(
S−1

S
)

𝑑−𝑘
𝐴−1

𝑘=0

  (5) 

 

In (5) calculate the probability of hit in accesses with reuse distance equal or greater than A. To 

calculate the hit rate in such reuse distance, we multiply the (5) with (1) the fraction of accesses that has that 

reuse distance which gives rise to (6) and (7). 

 

P(di) =
𝑁𝑜.𝑜𝑓 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑢𝑠𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒=𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠
∗ ∑ (𝑑

𝑘
) (

1

𝑆
)

𝑘

(
S−1

S
)

𝑑−𝑘
𝐴−1

𝑘=0

  (6) 

 

P(di) = 𝑅𝑑 ∗ ∑ (𝑑
𝑘

) (
1

𝑆
)

𝑘

(
S−1

S
)

𝑑−𝑘
𝐴−1

𝑘=0

 (7) 

 

In (6) and (7) gives the probability of hit in a given reuse distance equal or greater than degree of 

associative in cache. Then the total hit rate for all the reuse distance equal to A and above is given in (8). 

 

P(d≥ATotal) = ∑ 𝑅𝑑
∞
𝐴 𝑑

∗ ∑ (𝑑
𝑘

) (
1

𝑆
)

𝑘

(
S−1

S
)

𝑑−𝑘
𝐴−1

𝑘=0

  (8) 

 

where Rd is reuse distance distribution of memory accesses with reuse distance=d. 

In (8) gives cache hit rate for a memory block reuse with reuse distance greater or equal to 

associativity of a cache A. In other to obtain the overall hit rate of an application giving an LRU cache with 

associativity A and number of set S, addition of all the hit rate of every memory reuse distance distribution 
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including those with reuse less than or equal to A-1 is required. Therefore, cache hit rate of an application is 

given as shown in (9) which is derived by obtaining the cumulative reuse distance distributions up to A-1 and 

adding it to (8). 

 

𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 = ∑ 𝑅𝑑
𝐴−1
0 +  ∑ 𝑅𝑑

∞
𝐴 ∗ ∑ (𝑑

𝑘
) (

1

𝑆
)

𝑘

(
S−1

S
)

𝑑−𝑘
𝐴−1

𝑘=0

  (9) 

 

In (9) gives us the cache hit rate of an application in set associative cache with least recently used 

(LRU) replacement policy. 

 

 

3. RESEARCH DESIGN 

This section presents the data, tools, benchmarks and experimental setup for this study. We also 

explore the methods employed in the implementation of this study. 

 

3.1.  Metrics 

In this experiment, we choose a microarchitecture-independent metric which characterized the 

memory usage of embedded system workloads. The metric been selected is reuse distance which was profiled 

using MICA Pintool [28]. This metric is microarchitecture independent because it only characterizes the 

memory behavior of workloads given a particular instruction set architecture (ISA). It is flexible to use and 

remain the same across different microarchitecture within the same ISA. Also, cache parameters such as 

cache sizes and configurations were also used along with this reuse distance to predict cache performance 

which in this case was cache hit rate. 

 

3.2.  Benchmarks 

We used Mibench benchmarks [29] in the evaluation of the cache model presented. Mibench 

benchmarks are benchmark suite which follows EEMBC benchmarks [30] model. It is divided into six 

groups to represents the six domains of embedded systems. Three benchmarks were chosen from Mibench 

benchmark, two from automotive/industrial domain which are bitcounts and basicmath and FFT benchmark 

from network domain. These benchmarks were used to evaluate the model presented in this paper. 

 

3.3.  Tools 

In order to profile the memory reuse distance, Intel Pin [23] a dynamic instrumentation engine was 

used along with Pintool called MICA developed by Eeckhout and Hoste [28]. This pin tool is capable of 

characterizing the memory reuse distance of embedded systems workload. The results of this tool are 

generated in bin with each bin representing the frequency of a particular range of reuse distance. MICA 

Pintool can be configured to profile a particular number of instructions or full instructions using its 

configuration file. The cache model presented is built using Bournoli cumulative binomial probability as 

shown in section 2. After evaluation of the model using the profiled reuse distance metrics and cache 

configuration parameters, we use sim-cheetah [31] from Simplescalar simulator suites [32] to simulate these 

selected benchmarks given the corresponding cache sizes and configurations. 

 

3.4.  Implementation 

It is also important to note that all results from this study were generated using Intel® core (TM) i3 

processor, Ubuntu 10.10 and gcc-3.4. Intel Pin-3.4 was used along with MICA_v0.40 Pintool to characterize 

the applications to generate reuse distance profiles. Sim-cheetah simulator from Simplescalar simulator suite 

v4.0 was used to compare the results of the cache model.  We implemented the cache model using the 

following cache configurations; 2-ways, 4-ways, 8-ways and 16-ways and the cache sizes examined was 4kb, 

8kb, 16kb, 32kb, and 64kb. The size of cache line used in both evaluation and sim-cheetah simulation was 

32kb. These cache parameters were chosen to represent real world level one (L1) data cache in an embedded 

processor. Three benchmarks were chosen from Mibench benchmark, two from automotive/industrial domain 

which are bitcounts and basicmath and FFT benchmark from network domain. These benchmarks were used 

to evaluate the model presented in this paper. For the model evaluation, these benchmarks were compiled 

using gcc-3.4 with O3 optimization. First, the selected applications after compilation were characterized into 

their memory reuse distance using MICA Pintool. Then we built a reuse distance histogram for the three 

benchmarks selected to show how characterized were the benchmarks, given their memory reuse distance. In 

order to evaluate the model, these memories reused distance (d) profiled along with corresponding cache 

parameters were substituted in our cache model to predict or to estimate the cache hit rate for given 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Modeling cache performance for embedded systems (V. C. Chijindu) 

2915 

application. For each benchmark, these steps were taking for the whole cache sizes and configurations, one at 

a time to arrive at the results presented. Finally, sim-cheetah was used to simulate these selected benchmarks 

by configuring it for the same cache sizes and configurations as in the cache model evaluation. The results of 

sim-cheetah give the cache miss rate which was converted to hit rate using the relationship between the two 

parameters. Both results from cache model and sim-cheetah were presented alongside each other in a table 

for comparisons. We also calculated the absolute mean errors between the cache model results and that from 

sim-cheetah simulator. These calculated errors were presented alongside the tables of results. 

 

 

4. RESULTS AND DISCUSSION 

In this section, we evaluate the model given in (9). But before that, we characterized the memory 

reuse distance of the three selected Mibench benchmarks and built their reuse distance histogram as shown in 

Figures 1-3. Figure 1 shows the reuse distance histogram of bitcount benchmark with more than 99.9 percent 

of the reuse distance having a reuse distance below 24 while the largest reuse distance for the benchmarks is 

384. In Figure 2, which is the reuse distance histogram of Basicmath benchmark, the highest memory reuse 

distance obtained is 196608 as compared to 384 from bitcount. Also, more than 99.9 percent of the memory 

access in basicmath benchmark has its reuse distance at maximum of 192. Figure 3 shows the reuse distance 

histogram of FFT benchmark. It shows that its largest reuse distance is 49152 with frequency of 76562. Over 

99.8% of the reuse distance has reuse distance below 384 meaning that the benchmark locality is good.  
 
 

  
  

Figure 1. Reused distance histogram of bitcount 

benchmark 

Figure 2. Reused distance histogram of basicmath 

benchmark 
 

 

 
 

Figure 3. Reuse distance histogram of FFT benchmark 

 

 

After characterizing the benchmarks, the reuse distance profiles were used to evaluate our cache 

model. Also, the benchmarks were simulated using sim-cheetah simulator under the same cache parameters 

as in cache model evaluation for comparison of results. Both results were shown alongside each other in a 
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table with the calculated absolute error between them. Tables 1, 2 and 3 shows the evaluated results obtained 

by using the cache model to estimate hit rate and that from sim-cheetah simulator for bitcount, basicmath and 

FFT benchmarks respectively for comparisons.  

 

 

Table 1. Results on FFT benchmark for different cache configurations and sizes with errors 

Cache Configurations 
Percentage Hit Rates Using Proposed 

Model 

Percentage Hit Rates Using 

Sim-cheetah 

Absolute 

Errors 

4kb  16-Ways 99.9986 99.9998 0.0012 

4kb  8-Ways 99.9984 99.9998 0.0014 
4kb  4-Ways 99.9891 99.9998 0.0107 

4kb  2-Ways 99.6254 99.9998 0.3730 

8kb  16-Ways 99.9002 99.9998 0.0996 
8kb  8-Ways 99.9982 99.9998 0.0016 

8kb  4-Ways 99.9993 99.9998 0.0005 

8kb  2-Ways 99.9994 99.9998 0.0004 
16kb  16-Ways 99.9995 99.9998 0.0003 

16kb  8-Ways 99.9995 99.9998 0.0003 

16kb  4-Ways 99.9994 99.9998 0.0004 
16kb  2-Ways 99.9739 99.9998 0.0259 

32kb  16-Ways 99.9930 99.9998 0.0068 

32kb  8-Ways 99.9995 99.9998 0.0003 
32kb  4-Ways 99.9995 99.9998 0.0003 

32kb  2-Ways 99.9995 99.9998 0.0003 
64kb  16-Ways 99.9995 99.9998 0.0003 

64kb  8-Ways 99.9995 99.9998 0.0003 

64kb  4-Ways 99.9995 99.9998 0.0003 
64kb  2-Ways 99.9979 99.9998 0.0019 

Mean Values 99.9734 99.9998 0.02629 

 

 

Table 2. Results on basicmath benchmark for different cache configurations and sizes with errors 

Cache Configurations 
Percentage Hit Rates Using 

Proposed Model 

Percentage Hit Rates Using 

Sim-cheetah 

Absolute 

Errors 

4kb  16-Ways 92.3929 99.8441 7.4512 

4kb  8-Ways 91.7408 99.8357 8.0949 
4kb  4-Ways 90.9682 99.8382 8.8700 

4kb  2-Ways 89.3096 99.7936 10.4840 

8kb  16-Ways 98.9793 99.9788 0.9995 
8kb  8-Ways 98.2066 99.9751 1.7685 

8kb  4-Ways 97.0596 99.9687 2.9091 

8kb  2-Ways 95.1039 99.9263 4.8224 
16kb  16-Ways 99.9504 99.9999 0.0495 

16kb  8-Ways 99.8778 99.9999 0.1221 

16kb  4-Ways 99.4657 99.9995 0.5338 
16kb  2-Ways 98.2240 99.9907 1.7667 

32kb  16-Ways 99.9546 99.9999 0.0453 

32kb  8-Ways 99.9635 99.9999 0.0364 
32kb  4-Ways 99.9023 99.9999 0.0976 

32kb  2-Ways 99.4299 99.9999 0.5700 
64kb  16-Ways 99.9546 99.9999 0.0453 

64kb  8-Ways 99.9546 99.9999 0.0453 

64kb  4-Ways 99.9503 99.9999 0.0496 
64kb  2-Ways 99.8096 99.9999 0.1903 

Mean Values 97.5099 99.9575 2.4476 

 

 

Figures 4-6 also shows the graphs of cache model predicted and sim-cheetah simulated hit rate 

against different cache configurations for bitcount, basicmath and FFT benchmark. The summary of the 

results shows that the model mean errors for the cache model for bitcount, basicmath, and FFT benchmarks 

are 0.0263%, 2.4476%, and 1.9000% respectively. Hence, the model mean error for the three benchmarks is 

equal to 1.4579%. These results are comparable to the results obtained in [20] and [22] which gave model 

mean errors for LRU as 1.9% and 2.17% respectively. 
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Table 3. Results on FFT benchmark for different cache configurations and sizes with errors 

Cache Configurations 
Percentage Hit Rates Using 

Proposed Model 

Percentage Hit Rates Using 

Sim-cheetah 

Absolute 

errors 

4kb  16-Ways 93.4509 99.8111 6.3602 
4kb  8-Ways 93.4834 99.8119 6.3285 

4kb  4-Ways 93.0136 99.6824 6.6692 

4kb  2-Ways 91.0497 98.3705 7.3208 
8kb  16-Ways 98.8278 99.8277 0.9999 

8kb  8-Ways 98.1577 99.8302 1.6725 

8kb  4-Ways 97.3649 99.8054 2.4405 
8kb  2-Ways 95.8140 98.9278 3.1138 

16kb  16-Ways 99.7724 99.8307 0.0583 

16kb  8-Ways 99.7016 99.8307 0.1291 
16kb  4-Ways 99.3466 99.8236 0.4770 

16kb  2-Ways 98.3499 99.8167 1.4668 

32kb  16-Ways 99.7802 99.8308 0.0506 
32kb  8-Ways 99.7788 99.8308 0.0520 

32kb  4-Ways 99.7321 99.8308 0.0987 

32kb  2-Ways 99.3428 99.8297 0.4869 
64kb  16-Ways 99.7802 99.8308 0.0506 

64kb  8-Ways 99.7802 99.8309 0.0507 

64kb  4-Ways 99.7761 99.8310 0.0549 
64kb  2-Ways 99.6587 99.8310 0.1723 

Mean Values 97.7981 99.7007 1.90000 

 

 

 
 

Figure 4. Comparison of model and sim-cheetah hit rate for bitcount benchmarks 

 

 

 
 

Figure 5. Comparison of model and sim-cheetah hit rate for basicmath benchmarks 
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Figure 6. Comparison of model and sim-cheetah hit rate for FFT benchmarks 

 

 

5. CONCLUSION 

The embedded workloads were characterized to collect reuse distance metrics using MICA Pintool. 

This metrics with corresponding cache configuration parameters were applied to the developed model to 

estimate cache hit rate as shown in the results from this study. The results were compared using sim-cheetah 

from Simplescalar simulators suite. The margin of errors in results was below 5% and within the acceptable 

limits showing that the model can be used to estimate hit rates of cache and to explore cache design options. 

This model proved to be feasible since the results were comparable to other existing cache models. The 

results shows that the smaller the reuse distance, the better the performance of the cache. The results of this 

model were compared to simulated hit rate from standard simulator called sim-cheetah and it was observed to 

follows similar trend with an allowable margin of error. In conclusion, this model as presented can be used to 

estimate cache memory behavior with reasonable accuracy.  
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