
Bulletin of Electrical Engineering and Informatics

Vol. 10, No. 5, October 2021, pp. 2910~2920

ISSN: 2302-9285, DOI: 10.11591/eei.v10i5.2459 2910

Journal homepage: http://beei.org

Modeling cache performance for embedded systems

V. C. Chijindu, O. K. Ugwueze, C. C. Udeze, M. A. Ahaneku, J. N. Eneh, O. M. Ezeja, E. C.

Anoliefo
Department of Electronic Engineering, Faculty of Engineering, University of Nigeria, Nsukka, Nigeria

Article Info ABSTRACT

Article history:

Received Apr 20, 2020

Revised Apr 29, 2021

Accepted Jul 23, 2021

 This paper presents a cache performance model for embedded systems. The

need for efficient cache design in embedded systems has led to the exploration

of various methods of design for optimal cache configurations for embedded

processor. Better users’ experiences are realized by improving performance

parameters of embedded systems. This work presents a cache hit rate

estimation model for embedded systems that can be used to explore optimal

cache configurations using Bourneli’s binomial cumulative probability based

on application of reuse distance profiles. The model presented was evaluated

using three mibench benchmarks which are bitcount, basicmath and FFT for

4kb, 8kb, 16kb, 32kb and 64kb sizes of cache under 2-way, 4-ways, 8-ways

and 16-ways set associative configurations, all using least recently-used

(LRU) replacement policy. The results were compared with the results

obtained using sim-cheetah from simplescalar simulators suite. The mean

errors for bitcount, basicmath, and FFT benchmarks are 0.0263%, 2.4476%,

and 1.9000% respectively. Therefore, the mean error for the three benchmarks

is equal to 1.4579%. The margin of errors in the results was below 5% and

within the acceptable limits showing that the model can be used to estimate hit

rates of cache and to explore cache design options.

Keywords:

Cache designs

Cache memory

Cache model

Cache performance

Embedded systems

Reuse distance

This is an open access article under the CC BY-SA license.

Corresponding Author:

O. K. Ugwueze

Department of Electronic Engineering

University of Nigeria, Nsukka

Enugu State, Nigeria

Email: kingsley.ugwueze@unn.edu.ng

1. INTRODUCTION

The need for cache memory arises as a result of the speed of processor being higher than that of the

main memory. It is worthy to note that the memory wall problem [1], [2] in general purpose computer also

affects embedded systems. The problem is that at a point an increase in processor speed does not contribute

much to performance of computer systems [3]. This is because the net increase in performance of a computer

system do not depend on processor alone but also dependent on other factors such as memory speed, input/

output device and the bus configuration. Moreover, increasing processor speed means increasing the clock

rate which has an adverse effect in term of power dissipation [4]. The major setback in computing system

performance is the improvement in the speed of memory devices such as DRAM [5] which is very slow

compared to processor. According to Wilkes [3], for two decades now, there have not being any major

improvement recorded in the area of memory speed. It means that processor has to waste most of it clock

cycle waiting to be serviced by the main memory. In effect, this memory speed limits the performance of

computer systems drastically. This has led to researches on how to improve the memory speed in order

increase the speed of computer systems. The formal way of closing this speed gap is by using cache memory

between the main memory and processor. In this quest, designers started using cache memory which is

https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Modeling cache performance for embedded systems (V. C. Chijindu)

2911

smaller by faster memory device made from static random access memory (SRAM) technology to copies

locations of memory in other to service the processor faster on request [6]. A typical embedded systems level

one L1, data cache memory is found in Arm Cortex A7 [7]. It has only two levels of cache memory but with

split data and instruction cache. The level one L1, data cache organization is set associative with least recently

used replacement policy. When a processor requests a memory location, that location is first search for in the

cache and if it is not in cache, the location will be fetched from main memory. This main memory location is

first copied into the cache before loading to the processor. Next time when this same memory location is

requested, it will be serviced from the cache thereby hiding the real speed or reducing the latency of the main

memory. This process helps to improve the speed of memory systems.

The idea behind the success of cache memory is locality of reference in a program [8]-[11]. Program

execution usually favours portion of the main memory within a short duration of time. According to Eklov et

al. [12], the factors that contribute to this locality patterns are sequential execution of instructions, loops in a

program, and nature of data items stored. First, principle of locality states that program tends to reuses

memory location in which it had accessed and that is called temporary locality [13], [14]. Secondly, it states

that it is also likely that location of the memory close to the recently referenced memory location may be

referenced in near future and it is called spatial locality [15]. These two properties of locality are what drive

the effectiveness of cache memory. The block of main memory which is referenced is copied into the cache

line following the mapping procedures. At the time that the cache is full any memory location requested by

the processor which is not in cache means that an already existing memory block in the cache have to be

evicted so that the recently referenced block will be copied into the cache. The procedure in which a block of

main memory already in the cache is selected for eviction from the cache and to be replaced by the most

recent request is called cache replacement policy [16]. The major replacement policy that are mostly used are

least recently used (LRU), random and first-in first-out (FIFO) replacement policies. The choice of

replacement policies used by computer architecture is dependent on the performance optimization

requirement and cost. Another important aspect of cache memory design is its degree of associativity with

the main memory. The procedure in which the block of main memory is mapped into the line of the cache is

called cache associative [17]. Some of the well-known standard caches mapping techniques are set

associative, direct mapping and fully associative mapping [18]. Cache associative is an important aspect of

cache performance criteria. So, it is worthy to note that cache hit rate and miss rate of cache is dependent on

the type of associative of the cache.

In order to calculate or predict the locality and performance of cache memory analytically through

any performance parameter like cache hit rate, latency and effectiveness, a metric that is microarchitectural

independent and also representative of the workload is required. Reuse distance and reuse time [19], [20] are

two most popular metrics that is used in prediction of cache performance. Reuse distance is the number of

unique intervening memory accesses between the use and the reuse of a particular memory location while

reuse time is the number of total or absolute memory accesses between the use and reuse of such memory

location. During program execution, processor makes series of reference to various memory locations that is

required for successful execution of the program. The flow of this memory location reference is called

memory reference stream. As the processor makes this reference, a collection of the memory location

referenced is called memory profile [6] which is very important input parameter in cache analysis. Memory

profile is useful as stack distance or reuse distance of a memory stream is obtained from it. The locality of

cache is determined through the analysis of program memory reference stream. If a memory reference stream

exhibits a significant temporary locality (e.g., once accessed, references to the same address location is likely

in near future) or spatial locality (e.g., once accessed, references to the neighbouring address locations is

likely in near future), the cache hit rate hence overall performance will be high [6]. According to Zhong [21],

the smaller the reuse distance of memory location of an application, the more the application obeys the

principle of locality. This give rise to overall increases in cache performance but if the reuse distances are

large there is high probability that the application will yield low hit rate in cache thereby reducing the cache

performance. In this study, the metric used was reuse distance because it describes well the locality of

memory accesses and is closely related to the behavior of LRU policy which allowed us to assess how well

the cache is utilized. Furthermore, reuse distance is machine-independent and deterministic, making it an

ideal metric for used in performance modeling.

The earlier background for analytical cache model is from the work of Mattson et al. [8], when they

developed a stack counting algorithms that processed accesses of an applications to memory locations and

their reuse as distance of the first access of that memory location in the stack to the its present access called

stack distance or reuse distance. Their interest was not to calculate or model cache behavior but to analyze

the locality of an application, as a result they did not come up with any cache model but their result is

background to this present study. According to Enbody and Brehob [22], they proposed an analytical cache

framework based on stack distance distribution to describe the behavior of cache. They developed model to

describe the locality of a reference stream and another one used to quantify cache locality and behaviour. It is

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 5, October 2021 : 2910 – 2920

2912

important to the present study because the cache model proposed in this study is an extension of their second

model. In the work of Pan and Jonsson [20], they proposed an analytical cache framework based on absolute

reuse time distribution to describe the behavior of cache.

The study used Pin [23] to trace the workload which are SPEC CPU2006 [24] benchmarks to get the

reuse time which is feed into their model for evaluation. Their study pointed out that profiling stack distance

of an application incurs much overhead so they resorted to low overhead metrics of absolute reuse distance or

reuse time. Beckman and Sanchez [25] also proposed a new probabilistic cache model based on absolute

reuse distance for high performance replacement policies. The model used reuse times which were collected

using hardware monitor and models replacement policies as abstract ranking functions. Their model is an

age-based model which comprises of age, eviction and hit distribution models. Another study by Chen et al.

[10] which focused on the optimal multi-level cache design used reuse distance metric to model cache

performance. In their work, they predicted the miss rate of multi-level fully associative cache with LRU

replacement policy using reuse distance metric. They assumed that fully associative LRU cache can be used

as representative of set associative cache as there is no significant difference in their performance giving the

same cache size. Just like the present study, they used Pintool to collect metrics and also compared their

results with results from Simplescalar simulation; their average error is 0.71% (L2) and 1.1% (L3). Gysi et al.

[26] proposed an analytical cache model algorithm that predict the miss and hit rate of fully associative with LRU

cache. They called their algorithm Haystack, and it make used of calculated program reuse distance to predict

performance just like the present study. The study used Polybench in evaluation of their model and compared

results with results from Uniprocessor simulator. They also validated their results using measures results

from PAPI [27]. The evaluation errors in their model were within 0.6% to the measured results.

This study will serve as useful tool for cache performance analysis as it will help computer

architects, researchers and students to have insight into cache behavior under different configurations. It will

also help them in design decision for system optimization and management. Equipped with proper

understanding of program locality and how to extract reuse distance from memory profile of a program,

prediction of cache performance will now become easier. The aim of this present study is to presents a model

of cache performance for embedded systems and the specifics objectives include:To develop a mathematical

cache hit rate estimation model; To characterize the locality of embedded system workloads; To evaluate the

model using the metrics from characterized embedded system workloads; and To compare the behaviour of

the model with that of standard cache simulator by applying the same characterized embedded workloads and

cache configurations parameters.

2. PROPOSED CACHE HIT RATE ESTIMATION MODEL

To model cache behaviour, the aim is to use reuse distance obtained using MICA pintool to generate

our model. This means that given a memory trace, T, for every reuse distance, ‘d’ one would want to know

the probability of cache hit. It is obvious that in set associative cache with LRU replacement policy that the

reuses of memory block for a distance that is less than the associativity of the cache is a hit. This is because

for any memory block to be replaced in cache there must be up to ‘A’ number of distinct access to that set

that contain memory block where ‘A’ is the degree of associative of the cache. Therefore, the hit ratio of all

the accesses with reuse distance d which is less than or equal to ‘A-1’ is the cumulative fraction of accesses

with reuse distance up to ‘d’ in the total of accesses.

Now for reuse distance, d, which is equal to ‘A’ and above, the problem is how to determine the hit

rate given that the reuse distance obtained is not set reuse distance but for the entire cache memory. Due to

the fact that we don’t have access to set reuse distance, it is right to estimate the probability that for a given

cache set X, which contain memory block E, that the reuse of memory block E, is a hit. To be able to

estimate that, certain assumptions have to be made to make this study tractable. The following assumptions

were made: The study assumed that memory accesses are mapped into various caches line randomly;

Mapping of cache lines into various caches sets are assume to be random; and Reuse distance distributions

are identically and independently distributed (iid). There is need to define certain concept that will help in

making the derivation of this cache model less cumbersome. If during the entire run of a program that

processor reuses some memory blocks with reuse distance d, the fraction of memory accesses with reuse

distance d, will be the fraction memory accesses with d, to the total memory accesses. Now, reuse distance

distribution Rd, is defined as the fraction of memory accesses with exactly reuse distance d, is given by (1).

𝑅𝑑 =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑟𝑒𝑢𝑠𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒,𝑓𝑑

𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠,𝑇
 (1)

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Modeling cache performance for embedded systems (V. C. Chijindu)

2913

where fd=frequency of reuse distance equal to exactly d, and T=total no. of memory accesses. Cumulative

Reuse distance R (i≤d) is also defined as the probability of obtaining at most reuse distance d, in the entire

memory accesses, as in (2):

𝑅(𝑖≤𝑑) = ∑ 𝑅𝑑
𝑑
𝑖=0 (2)

In full associative cache, (2) gives the hit rate of the cache when d is equal to B-1 where B is the

number of the block in a cache. In set associative cache, (2) is used to determine the hit rate at reuse distance

d, that is less or equal to A-1 where A is the associativity of the cache. In this study, the aim is to model set

associative L1 cache of which some of the reuse distance will be equal or more than the associativity of the

cache.

Let’s start by finding the probability of cache access being in cache set X, the probability of an

access being in set X is X1=1/S and the probability of not being in set X is X0=(1-1/S). So, assuming that X1 is

probability of success ρ and probability of failures X0 is q=(1- 1/S). This can be stated in form of binomial

probability by finding the probability of obtaining a success after d (reuse distance) using Bernoulli trials as

shown in (3):

P(k=Success) = ∑ (𝑛

𝑘
)𝑝𝑘𝑞𝑛−𝑘

𝑑

𝑘=0

 (3)

where k=1, 2, 3…d, (k is number of success)

In memory block, reuses of cache line which the reuse distance is more than the associativity of the

cache, the reuse can be cache hit only and only if the number of intervening accesses in cache set X is at most

equal to A-1. To calculate the probability of hit in reuse distance that is greater than or equal to the

associativity A, the probability of obtaining at most A-1 unique intervening accesses in cache set X is

obtained. This can be derived in form of cumulative binomial probability distribution function as shown in (4).

P(k≤A−1) = ∑ (𝑑

𝑘
)𝑝𝑘𝑞𝑑−𝑘

𝐴−1

𝑘=0

 (4)

Substituting for ρ and q in (4) gives (5):

P(k≤A−1) = ∑ (𝑑
𝑘

) (
1

𝑆
)

𝑘

(
S−1

S
)

𝑑−𝑘
𝐴−1

𝑘=0

 (5)

In (5) calculate the probability of hit in accesses with reuse distance equal or greater than A. To

calculate the hit rate in such reuse distance, we multiply the (5) with (1) the fraction of accesses that has that

reuse distance which gives rise to (6) and (7).

P(di) =
𝑁𝑜.𝑜𝑓 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑢𝑠𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒=𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠
∗ ∑ (𝑑

𝑘
) (

1

𝑆
)

𝑘

(
S−1

S
)

𝑑−𝑘
𝐴−1

𝑘=0

 (6)

P(di) = 𝑅𝑑 ∗ ∑ (𝑑
𝑘

) (
1

𝑆
)

𝑘

(
S−1

S
)

𝑑−𝑘
𝐴−1

𝑘=0

 (7)

In (6) and (7) gives the probability of hit in a given reuse distance equal or greater than degree of

associative in cache. Then the total hit rate for all the reuse distance equal to A and above is given in (8).

P(d≥ATotal) = ∑ 𝑅𝑑
∞
𝐴 𝑑

∗ ∑ (𝑑
𝑘

) (
1

𝑆
)

𝑘

(
S−1

S
)

𝑑−𝑘
𝐴−1

𝑘=0

 (8)

where Rd is reuse distance distribution of memory accesses with reuse distance=d.

In (8) gives cache hit rate for a memory block reuse with reuse distance greater or equal to

associativity of a cache A. In other to obtain the overall hit rate of an application giving an LRU cache with

associativity A and number of set S, addition of all the hit rate of every memory reuse distance distribution

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 5, October 2021 : 2910 – 2920

2914

including those with reuse less than or equal to A-1 is required. Therefore, cache hit rate of an application is

given as shown in (9) which is derived by obtaining the cumulative reuse distance distributions up to A-1 and

adding it to (8).

𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 = ∑ 𝑅𝑑
𝐴−1
0 + ∑ 𝑅𝑑

∞
𝐴 ∗ ∑ (𝑑

𝑘
) (

1

𝑆
)

𝑘

(
S−1

S
)

𝑑−𝑘
𝐴−1

𝑘=0

 (9)

In (9) gives us the cache hit rate of an application in set associative cache with least recently used

(LRU) replacement policy.

3. RESEARCH DESIGN

This section presents the data, tools, benchmarks and experimental setup for this study. We also

explore the methods employed in the implementation of this study.

3.1. Metrics

In this experiment, we choose a microarchitecture-independent metric which characterized the

memory usage of embedded system workloads. The metric been selected is reuse distance which was profiled

using MICA Pintool [28]. This metric is microarchitecture independent because it only characterizes the

memory behavior of workloads given a particular instruction set architecture (ISA). It is flexible to use and

remain the same across different microarchitecture within the same ISA. Also, cache parameters such as

cache sizes and configurations were also used along with this reuse distance to predict cache performance

which in this case was cache hit rate.

3.2. Benchmarks

We used Mibench benchmarks [29] in the evaluation of the cache model presented. Mibench

benchmarks are benchmark suite which follows EEMBC benchmarks [30] model. It is divided into six

groups to represents the six domains of embedded systems. Three benchmarks were chosen from Mibench

benchmark, two from automotive/industrial domain which are bitcounts and basicmath and FFT benchmark

from network domain. These benchmarks were used to evaluate the model presented in this paper.

3.3. Tools

In order to profile the memory reuse distance, Intel Pin [23] a dynamic instrumentation engine was

used along with Pintool called MICA developed by Eeckhout and Hoste [28]. This pin tool is capable of

characterizing the memory reuse distance of embedded systems workload. The results of this tool are

generated in bin with each bin representing the frequency of a particular range of reuse distance. MICA

Pintool can be configured to profile a particular number of instructions or full instructions using its

configuration file. The cache model presented is built using Bournoli cumulative binomial probability as

shown in section 2. After evaluation of the model using the profiled reuse distance metrics and cache

configuration parameters, we use sim-cheetah [31] from Simplescalar simulator suites [32] to simulate these

selected benchmarks given the corresponding cache sizes and configurations.

3.4. Implementation

It is also important to note that all results from this study were generated using Intel® core (TM) i3

processor, Ubuntu 10.10 and gcc-3.4. Intel Pin-3.4 was used along with MICA_v0.40 Pintool to characterize

the applications to generate reuse distance profiles. Sim-cheetah simulator from Simplescalar simulator suite

v4.0 was used to compare the results of the cache model. We implemented the cache model using the

following cache configurations; 2-ways, 4-ways, 8-ways and 16-ways and the cache sizes examined was 4kb,

8kb, 16kb, 32kb, and 64kb. The size of cache line used in both evaluation and sim-cheetah simulation was

32kb. These cache parameters were chosen to represent real world level one (L1) data cache in an embedded

processor. Three benchmarks were chosen from Mibench benchmark, two from automotive/industrial domain

which are bitcounts and basicmath and FFT benchmark from network domain. These benchmarks were used

to evaluate the model presented in this paper. For the model evaluation, these benchmarks were compiled

using gcc-3.4 with O3 optimization. First, the selected applications after compilation were characterized into

their memory reuse distance using MICA Pintool. Then we built a reuse distance histogram for the three

benchmarks selected to show how characterized were the benchmarks, given their memory reuse distance. In

order to evaluate the model, these memories reused distance (d) profiled along with corresponding cache

parameters were substituted in our cache model to predict or to estimate the cache hit rate for given

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Modeling cache performance for embedded systems (V. C. Chijindu)

2915

application. For each benchmark, these steps were taking for the whole cache sizes and configurations, one at

a time to arrive at the results presented. Finally, sim-cheetah was used to simulate these selected benchmarks

by configuring it for the same cache sizes and configurations as in the cache model evaluation. The results of

sim-cheetah give the cache miss rate which was converted to hit rate using the relationship between the two

parameters. Both results from cache model and sim-cheetah were presented alongside each other in a table

for comparisons. We also calculated the absolute mean errors between the cache model results and that from

sim-cheetah simulator. These calculated errors were presented alongside the tables of results.

4. RESULTS AND DISCUSSION

In this section, we evaluate the model given in (9). But before that, we characterized the memory

reuse distance of the three selected Mibench benchmarks and built their reuse distance histogram as shown in

Figures 1-3. Figure 1 shows the reuse distance histogram of bitcount benchmark with more than 99.9 percent

of the reuse distance having a reuse distance below 24 while the largest reuse distance for the benchmarks is

384. In Figure 2, which is the reuse distance histogram of Basicmath benchmark, the highest memory reuse

distance obtained is 196608 as compared to 384 from bitcount. Also, more than 99.9 percent of the memory

access in basicmath benchmark has its reuse distance at maximum of 192. Figure 3 shows the reuse distance

histogram of FFT benchmark. It shows that its largest reuse distance is 49152 with frequency of 76562. Over

99.8% of the reuse distance has reuse distance below 384 meaning that the benchmark locality is good.

Figure 1. Reused distance histogram of bitcount

benchmark

Figure 2. Reused distance histogram of basicmath

benchmark

Figure 3. Reuse distance histogram of FFT benchmark

After characterizing the benchmarks, the reuse distance profiles were used to evaluate our cache

model. Also, the benchmarks were simulated using sim-cheetah simulator under the same cache parameters

as in cache model evaluation for comparison of results. Both results were shown alongside each other in a

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 5, October 2021 : 2910 – 2920

2916

table with the calculated absolute error between them. Tables 1, 2 and 3 shows the evaluated results obtained

by using the cache model to estimate hit rate and that from sim-cheetah simulator for bitcount, basicmath and

FFT benchmarks respectively for comparisons.

Table 1. Results on FFT benchmark for different cache configurations and sizes with errors

Cache Configurations
Percentage Hit Rates Using Proposed

Model

Percentage Hit Rates Using

Sim-cheetah

Absolute

Errors

4kb 16-Ways 99.9986 99.9998 0.0012

4kb 8-Ways 99.9984 99.9998 0.0014
4kb 4-Ways 99.9891 99.9998 0.0107

4kb 2-Ways 99.6254 99.9998 0.3730

8kb 16-Ways 99.9002 99.9998 0.0996
8kb 8-Ways 99.9982 99.9998 0.0016

8kb 4-Ways 99.9993 99.9998 0.0005

8kb 2-Ways 99.9994 99.9998 0.0004
16kb 16-Ways 99.9995 99.9998 0.0003

16kb 8-Ways 99.9995 99.9998 0.0003

16kb 4-Ways 99.9994 99.9998 0.0004
16kb 2-Ways 99.9739 99.9998 0.0259

32kb 16-Ways 99.9930 99.9998 0.0068

32kb 8-Ways 99.9995 99.9998 0.0003
32kb 4-Ways 99.9995 99.9998 0.0003

32kb 2-Ways 99.9995 99.9998 0.0003
64kb 16-Ways 99.9995 99.9998 0.0003

64kb 8-Ways 99.9995 99.9998 0.0003

64kb 4-Ways 99.9995 99.9998 0.0003
64kb 2-Ways 99.9979 99.9998 0.0019

Mean Values 99.9734 99.9998 0.02629

Table 2. Results on basicmath benchmark for different cache configurations and sizes with errors

Cache Configurations
Percentage Hit Rates Using

Proposed Model

Percentage Hit Rates Using

Sim-cheetah

Absolute

Errors

4kb 16-Ways 92.3929 99.8441 7.4512

4kb 8-Ways 91.7408 99.8357 8.0949
4kb 4-Ways 90.9682 99.8382 8.8700

4kb 2-Ways 89.3096 99.7936 10.4840

8kb 16-Ways 98.9793 99.9788 0.9995
8kb 8-Ways 98.2066 99.9751 1.7685

8kb 4-Ways 97.0596 99.9687 2.9091

8kb 2-Ways 95.1039 99.9263 4.8224
16kb 16-Ways 99.9504 99.9999 0.0495

16kb 8-Ways 99.8778 99.9999 0.1221

16kb 4-Ways 99.4657 99.9995 0.5338
16kb 2-Ways 98.2240 99.9907 1.7667

32kb 16-Ways 99.9546 99.9999 0.0453

32kb 8-Ways 99.9635 99.9999 0.0364
32kb 4-Ways 99.9023 99.9999 0.0976

32kb 2-Ways 99.4299 99.9999 0.5700
64kb 16-Ways 99.9546 99.9999 0.0453

64kb 8-Ways 99.9546 99.9999 0.0453

64kb 4-Ways 99.9503 99.9999 0.0496
64kb 2-Ways 99.8096 99.9999 0.1903

Mean Values 97.5099 99.9575 2.4476

Figures 4-6 also shows the graphs of cache model predicted and sim-cheetah simulated hit rate

against different cache configurations for bitcount, basicmath and FFT benchmark. The summary of the

results shows that the model mean errors for the cache model for bitcount, basicmath, and FFT benchmarks

are 0.0263%, 2.4476%, and 1.9000% respectively. Hence, the model mean error for the three benchmarks is

equal to 1.4579%. These results are comparable to the results obtained in [20] and [22] which gave model

mean errors for LRU as 1.9% and 2.17% respectively.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Modeling cache performance for embedded systems (V. C. Chijindu)

2917

Table 3. Results on FFT benchmark for different cache configurations and sizes with errors

Cache Configurations
Percentage Hit Rates Using

Proposed Model

Percentage Hit Rates Using

Sim-cheetah

Absolute

errors

4kb 16-Ways 93.4509 99.8111 6.3602
4kb 8-Ways 93.4834 99.8119 6.3285

4kb 4-Ways 93.0136 99.6824 6.6692

4kb 2-Ways 91.0497 98.3705 7.3208
8kb 16-Ways 98.8278 99.8277 0.9999

8kb 8-Ways 98.1577 99.8302 1.6725

8kb 4-Ways 97.3649 99.8054 2.4405
8kb 2-Ways 95.8140 98.9278 3.1138

16kb 16-Ways 99.7724 99.8307 0.0583

16kb 8-Ways 99.7016 99.8307 0.1291
16kb 4-Ways 99.3466 99.8236 0.4770

16kb 2-Ways 98.3499 99.8167 1.4668

32kb 16-Ways 99.7802 99.8308 0.0506
32kb 8-Ways 99.7788 99.8308 0.0520

32kb 4-Ways 99.7321 99.8308 0.0987

32kb 2-Ways 99.3428 99.8297 0.4869
64kb 16-Ways 99.7802 99.8308 0.0506

64kb 8-Ways 99.7802 99.8309 0.0507

64kb 4-Ways 99.7761 99.8310 0.0549
64kb 2-Ways 99.6587 99.8310 0.1723

Mean Values 97.7981 99.7007 1.90000

Figure 4. Comparison of model and sim-cheetah hit rate for bitcount benchmarks

Figure 5. Comparison of model and sim-cheetah hit rate for basicmath benchmarks

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 5, October 2021 : 2910 – 2920

2918

Figure 6. Comparison of model and sim-cheetah hit rate for FFT benchmarks

5. CONCLUSION

The embedded workloads were characterized to collect reuse distance metrics using MICA Pintool.

This metrics with corresponding cache configuration parameters were applied to the developed model to

estimate cache hit rate as shown in the results from this study. The results were compared using sim-cheetah

from Simplescalar simulators suite. The margin of errors in results was below 5% and within the acceptable

limits showing that the model can be used to estimate hit rates of cache and to explore cache design options.

This model proved to be feasible since the results were comparable to other existing cache models. The

results shows that the smaller the reuse distance, the better the performance of the cache. The results of this

model were compared to simulated hit rate from standard simulator called sim-cheetah and it was observed to

follows similar trend with an allowable margin of error. In conclusion, this model as presented can be used to

estimate cache memory behavior with reasonable accuracy.

REFERENCES
[1] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory Systems,” Supercomputing

Frontiers and Innovations: an International Journal, vol. 1, no. 3, pp 19-55, 2014, doi: 10.14529/jsfi140302.

[2] M. Ferdman et al., “Clearing the Clouds: A Study of Emerging Scale-Out Work-loads on Modern Hardware,”.

Proceedings of the seventeenth international conference on Architectural Support for Programming Languages and

Operating Systems, March 2012, pp. 37-48, doi: 10.1145/2150976.2150982.

[3] M. V. Wilkes, “The Memory Gap and the Future of High Performance Memories,” ACM SIGARCH Computer

Architecture News, vol. 29, no. 1, March 2001, pp 2-7, doi: 10.1145/373574.373576.

[4] G. E. Moore, “Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38,

number 8, April 19, 1965, pp.114 ff.,” in IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 33-35,

Sept. 2006, doi: 10.1109/N-SSC.2006.4785860.

[5] Y. Kim et al., “Flipping bits in memory without accessing them: An experimental study of DRAM disturbance

errors,” 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA), 2014, pp. 361-372, doi:

10.1109/ISCA.2014.6853210.

[6] V. Cuppu, B. Jacob, B. Davis and T. Mudge, “A performance comparison of contemporary DRAM architectures,”

Proceedings of the 26th International Symposium on Computer Architecture (Cat. No.99CB36367), 1999, pp. 222-

233, doi: 10.1109/ISCA.1999.765953.

[7] ARM Limited, “ARM1136JF-S and ARM1136J-S Technical Reference Manual,” Manual ARM Limited, 2006.

[8] R. L. Mattson, J. Gecsei, D. R. Slutz and I. L. Traiger, “Evaluation techniques for storage hierarchies,” in IBM

Systems Journal, vol. 9, no. 2, pp. 78-117, 1970, doi: 10.1147/sj.92.0078.

[9] K. Beyls and E. H. D’Hollander, “Reuse Distance as a Metric for Cache Behavior,” in Proceedings of the

Conference on Parallel and Distributed Computing and Systems, 2001, pp. 617-662.

[10] Chi-Kang Chen, Hsin-I Wu, Cheng-Lin Tsai, “A Reuse-Distance Based Approach for Early-Stage Multi-Level

Cache Design Optimization,” in Proceedings of Workshop on Synthesis And System Integration of Mixed

Information technologies (SASIMI), 2018.

[11] Xiaoya Xiang, Chen Ding, Hao Luo, and Bin Bao, “HOTL: A higher order theory of locality,” ACM SIGARCH

Computer Architecture News, vol. 41, no. 1, pp. 343-356, March 2013, doi: 10.1145/2490301.2451153.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Modeling cache performance for embedded systems (V. C. Chijindu)

2919

[12] D. Eklov and E. Hagersten, “StatStack: Efficient modeling of LRU caches,” 2010 IEEE International Symposium

on Performance Analysis of Systems & Software (ISPASS), 2010, pp. 55-65, doi: 10.1109/ISPASS.2010.5452069.

[13] Zhigang Hu, S. Kaxiras, and M. Martonosi, “Timekeeping in the memory system: Predicting and optimizing

memory behavior,” ACM SIGARCH Computer Architecture News, vol. 30, no. 2, pp 209-220, May 2002, doi:

10.1145/545214.545239.

[14] D. Eklov and E. Hagersten, “StatStack: Efficient modeling of LRU caches,” 2010 IEEE International Symposium

on Performance Analysis of Systems & Software (ISPASS), 2010, pp. 55-65, doi: 10.1109/ISPASS.2010.5452069.

[15] S. T. Srinivasan, R. Dz-Ching Ju, A. R. Lebeck and C. Wilkerson, “Locality vs. criticality,” Proceedings 28th

Annual International Symposium on Computer Architecture, 2001, pp. 132-143, doi: 10.1109/ISCA.2001.937442.

[16] A. Jaleel, K. B. Theobald, S. C. Steely, and J. Emer, “High performance cache replacement using re-reference

interval prediction (RRIP),” ISCA ’10: Proceedings of the 37th Annual International Symposium onComputer

Architecture, 2010, pp. 60-71, doi: 10.1145/1815961.1815971.

[17] S. Kumar and P. K. Singh, “An overview of modern cache memory and performance analysis of replacement

policies,” 2016 IEEE International Conference on Engineering and Technology (ICETECH), 2016, pp. 210-214,

doi: 10.1109/ICETECH.2016.7569243.

[18] M. W. Ahmed &. M. A. Shah, “Cache Memory: An Analysis on Optimisation Techniques,” International Journal

of Computer and Information Technology, vol. 4, no. 2, pp. 414-418, 2015.

[19] Q. Wang, X. Liu and M. Chabbi, “Featherlight Reuse-Distance Measurement,” 2019 IEEE International

Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 440-453, doi:

10.1109/HPCA.2019.00056.

[20] X. Pan and B. Jonsson, “A modeling framework for reuse distance-based estimation of cache performance,” 2015

IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 2015, pp. 62-71, doi:

10.1109/ISPASS.2015.7095785.

[21] Yutao Zhong, Xipeng Shen, and Chen Ding, “Program locality analysis using reuse distance,” ACM Transactions

on Programming Languages and Systems, vol. 31, no. 6, pp. 245-257, 2009, doi: 10.1145/1552309.1552310.

[22] M. Brehob and R. Enbody, “An Analytical Model of Locality and Caching,” Technical Report MSUCPS:TR99-31,

Michigan State University, Department of Computer Science and Engineering, Michigan, 1999.

[23] Chi-Keung Luk et al., “Pin: building customized program analysis tools with dynamic instrumentation,” ACM

SIGPLAN Notices, vol. 40, no. 6, June 2005, pp 190-200, doi: 10.1145/1064978.1065034

[24] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” ACM SIGARCH Computer Architecture News, vol. 34,

no. 4, September 2006, pp 1-17, doi: 10.1145/1186736.1186737

[25] N. Beckmann and D. Sanchez, “Modeling cache performance beyond LRU,” 2016 IEEE International Symposium

on High Performance Computer Architecture (HPCA), 2016, pp. 225-236, doi: 10.1109/HPCA.2016.7446067.

[26] T. Gysi, T. Grosser, L. Bradner and T. Hoefler “A Fast Analytical Model of Fully Associative Caches,” in PLDI

2019: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and

Implementation, June 2019, pp. 816-829, doi: 10.1145/3314221.3314606.

[27] P. J. Mucci, S. Browne, C. Deane, and G. Ho. “PAPI: A Portable Interface to Hardware Performance Counters,” In

Proceedings of the Department of Defense HPCMP Users Groupconference, 1999, pp. 7-10.

[28] K. Hoste and L. Eeckhout, “Microarchitecture-Independent Workload Characterization,” in IEEE Micro, vol. 27,

no. 3, pp. 63-72, May-June 2007, doi: 10.1109/MM.2007.56.

[29] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B. Brown, “MiBench: A free,

commercially representative embedded benchmark suite,” Proceedings of the Fourth Annual IEEE International

Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538), 2001, pp. 3-14, doi:

10.1109/WWC.2001.990739.

[30] J. A. Poovey, T. M. Conte, M. Levy and S. Gal-On, “A Benchmark Characterization of the EEMBC Benchmark

Suite,” in IEEE Micro, vol. 29, no. 5, pp. 18-29, Sept.-Oct. 2009, doi: 10.1109/MM.2009.74.

[31] R. A. Sugumar and S. G. Abraham, Efficient simulation of multiple cache configurations using binomial trees.

Technical Report CSE-TR-111-91, CSE Division, University of Michigan, 1991.

[32] T. Austin, E. Larson and D. Ernst, “SimpleScalar: an infrastructure for computer system modeling,” in Computer,

vol. 35, no. 2, pp. 59-67, Feb. 2002, doi: 10.1109/2.982917.

BIOGRAPHIES OF AUTHORS

V. C. Chijindu is a Senior Lecturer in the Department of Electronic Engineering, University

of Nigeria, Nsukka, Nigeria. He obtained B.Eng and M.Eng in Electronic and Computer

Engineering from Anambra State University of Technology Enugu Nigeria and Ph.D. in

Computer and Control Engineering from Nnamdi Azikiwe University Awka Nigeria. His

current research interests include artificial intelligence in medical diagnosis, digital systems

design, signal/image processing, renewable energy systems and wireless sensor networks. E-

mail: vincent.chijindu@unn.edu.ng

https://doi.org/10.1145/1815961.1815971

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 5, October 2021 : 2910 – 2920

2920

O. K. Ugwueze received his B.Eng in Electronics Engineering from University of Nigeria,

Nsukka, Nigeria. He is currently a post graduate student in Computer and Digital Electronics at

Electronic Engineering Department of the University of Nigeria, Nsukka. He is a member of

Nigerian Society of Engineers. E-mail: kingsley.ugwueze@unn.edu.ng

C. C. Udeze received his B.Eng and M.Sc in Electronics and Computer Engineering from

Nnamdi Azikwe University, Awka, Nigeria. He holds a PhD in Computer and Control Systems

Engineering. He is a Senior Lecturer in Electronic Engineering Department of the University

of Nigeria, Nsukka. He is a member of Nigerian Society of Engineers and has his COREN

registration. E-mail: chidiebele.udeze@unn.edu.ng

M. A. Ahaneku obtained his B.Eng. Electrical/Electronic Engineering and MSc

Communications Engineering from Federal University of Technology, Owerri, Nigeria in 1994

and 2000, respectively. He holds Ph.D in Communications Engineering from University of

Nigeria, Nsukka. He is a Senior Lecturer in the Department of Electronic Engineering,

University of Nigeria, and Nsukka. E-mail: mamilus.ahaneku@unn.edu.ng or

ahamac2004@yahoo.co.uk

J. N. Eneh is currently a Senior Lecturer in the Department of Electronic Engineering of

University of Nigeria Nsukka (UNN), She holds a Ph.D in Computer and Control Engineering

Research Interest Areas Includes: Control System Networks, Robotics and Artificial

Intelligence, Multi- Agent Systems, Optimal Control. E-mail: nnenna.eneh@unn.edu.ng

O. M. Ezeja holds a bachelor’s degree in Electronic Engineering, a Master’s and Doctorate

degrees in Communication Engineering, all from the University of Nigeria, Nsukka, Nigeria.

He is a Senior Lecturer in the Department of Electronic Engineering, University of Nigeria,

Nsukka. His research interests include modelling handover algorithms for mobile

communication networks, and wireless sensor networks (WSN). E-mail:

obinna.ezeja@unn.edu.ng

E. C. Anoliefo received his B. A (Philosophy) in 1993 and B. Th (Theology) in 1998. He

also holds a B.Eng., M. Eng. and Ph.D. in Electronic Engineering from University of Nigeria,

Nsukka. He is a Senior Lecturer in the Department of Electronic Engineering, University of

Nigeria Nsukka. E-mail: edward.anoliefo@unn.edu.ng

