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 Distributed denial of service attack classified as a structured attack to deplete 

server, sourced from various bot computers to form a massive data flow. 

Distributed denial of service (DDoS) data flows behave as regular data 

packet flows, so it is challenging to distinguish between the two. Data packet 

classification to detect DDoS attacks is one solution to prevent DDoS attacks 

and to maintain server resources maintained. The machine learning method 

especially artificial neural network (ANN), is one of the effective ways to 

detect the flow of data packets in a computer network. Based on the research 

that has carried out, it concluded that ANN with hidden layer architecture 

that contains neuron twice as neuron on the input layer (2n) produces a stable 

detection accuracy value on Quasi-Newton, scaled-conjugate and resilient-

propagation training functions. Based on the studies conducted, it concluded 

that ANN architecture sufficiently affected the scaled-conjugate and 

resilient-propagation training functions, otherwise the Quasi-Newton training 

function. The best detection accuracy achieved from the experiment is 

99.60%, 1.000 recall, 0.988 precision, and 0.993 f-measure using the quasi-

newton training function with 6-(12)-2 neural network architecture. 
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1. INTRODUCTION 

Distributed denial of service attacks (DDoS) is a type of attack that has a quite fatal impact on the 

target server [1]. DDoS attacks originate from a collection of small-sized data packet streams sourced from a 

large number of bot computers to produce a massive data flow directed at a target server [2]. DDoS attacks 

are controlled by attackers who coordinate a large number of bot/slave computers intending to shut down and 

deplete server resources, including CPU, memory, disk storage, and bandwidth, so that legitimate clients 

cannot access the allocated resources [3]. In general, packet flow patterns from DDoS attacks behave like 

normal packet data flow, making it difficult for network administrators to distinguish between proper data 

packet flow and attack data packet flow [4]. DDoS attacks for a long time can cause the server system to lose 

all of its services [5, 6]. Detection of the packet flow is one of the techniques to prevent DDoS attacks. 

Machine learning methods can be used as network packet detection techniques utilizing artificial neural 

network (ANN). DDoS attacks detection using ANN was once carried out by [7] by utilizing sinusoidal 

functions to extract essential features from network packet flow resulted in 95.56% accuracy. A neural 

network with resilient-propagation training function, pooled with the collective classifier output method and 
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the Neyman-Pearson minimization approach for verification and optimization of detection resulted in 97.45% 

accuracy, has also been used by [8] to detect DDoS constructed on DARPA and KDDCUP99 datasets. 

Detection of DDoS attacks by utilizing ANN methods other than based on DARPA and KDDCUP99 

datasets, which uses darknet packet flow data has been carried out by research [9]. In the study [10], UDP/53 

and TCP/80/8080 packet flow used as ANN training inputs that have been previously extracted by the Local 

Sensitive Hashing (LSH) method. As compared to research [10], which only detects UDP/53 and TC 

/80/8080 packet data flow, the study [11] includes ICMP packet flow as ANN training input to detect illegal 

flows in the network. ANN in research [11] trained by utilizing the backpropagation function. Research [12] 

proves that the neural network method can be used to identify the novel type of DDoS attacks effectively in 

the Hbase-Hadoop network environments. 

Founded on previous study related to the detection of illegal network packet flow using ANN, this 

research emphases on the neural network training function and hidden layer architecture that used to detect 

the DDoS attack packets flow, with the ultimate goal is to find out the best combination of training functions 

and hidden layer architecture used on ANN to identify regular packets flow and DDoS attack packets flow. 

The DDoS/malicious packet flow dataset published by UNSW-NB15 University of New South Wales [13] 

and the normal/regular packet flow dataset published by the Laboratory of Telkom Purwokerto Institute of 

Technology-Indonesia used in this study. 

 

 

2. RESEARCH METHOD 

To achieve the expected results, the study of detection of normal data packet flow and DDoS attacks 

packet flow on computer networks using a variety of training function schemes and hidden layer architecture 

schemes on the ANN involves several steps, as presented in Figure 1. 

 

 

 
 

Figure 1. Research method steps 

 

 

a. Retrieving the DDoS attack packet flow dataset from UNSW-NB15 University of New South Wales [13] 

in the .csv format and the normal/regular packet flow dataset from the Laboratory of Telkom Purwokerto 

Institute of Technology - Indonesia in the .pcap format as presented in Figure 2. 

b. Converting the .pcap format packet data stream to the overall .csv format 

c. Extract data packet flow features based on statistical functions, i.e.:  

− Average packet size (in bytes) 

− Number of packets (in bytes) 

− The variance of packet arrival time intervals (in seconds) 

− The variance of packet size (in bytes) 

− Packet flow speed (in bytes per second) 

− Number of bytes 

d. Building variation schema on the neural network training functions and the number of neurons in hidden 

layer architecture. 

e. Training ANN network architecture schemes with three variations of training functions. First with 

resilient-propagation, second with quasi-newton, and third with scaled-conjugate). 

f. Evaluating the performance of ANN training and detection results based on parameters of accuracy, 

iteration, and mean-squared error (MSE). 
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In point iv, the accuracy reflects the comparison between the sum of the true positive values 

(detection of normal packet flow) and the value of true negative (detection of packet flow of DDoS attacks) 

compared to the total amount of data. On the other hand, MSE is an essential parameter for evaluating the 

performance of training functions and ANN architecture [14]. 

 

 

 
 

Figure 2. The data packet flow dataset in the pcap format 

 

 

MSE reflects the absolute error value of the comparison between ANN training outcome patterns 

and the desired output patterns, while the iteration parameter describes the amount of time required by ANN 

to achieve convergence and trade-off between time and convergence. 

 

2.1.  Network packet flow feature extraction 

To detect the normal packet flow and malicious packet flow as presented in point b, the critical 

step needed is to extract the data packet flow feature from the dataset. The purpose of feature extraction is to 

produce and quantify the attributes of a dataset so that it can distinguish between one input pattern and 

another input. In this research, the whole process of extracting and quantizing the data packet flow feature 

carried out by dividing the fixed time moving window every five seconds. The data packet flow is extracted 

into six features based on statistical calculations, i.e.: 

a. Average packet size (in bytes) 

Logically, the longer the DDoS data packet flows in the network, the higher the value of the average 

packet size [15].  

b. Number of packets (in bytes) 

DDoS attacks aim to kill the target server's resources by sending a large number of packets in  

a specific time lag, resulting in a high accumulation of the number of packets flowing through  

the network at a particular time [15]. 

c. The variance of packet arrival time intervals (in seconds) 

DDoS packets overwrite the network bandwidth massively at a specified time lag, resulting in  

the arrival time interval value of one packet and the next packet shrinking and approaching zero.  

The formula for calculating the variance of packet arrival times shown in (1). 

 

𝑇𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = √
∑(𝑇𝑛−𝑇̅)2

𝑛
        (1) 

 

where Tn is the value of the time the packet was received, and 𝑇̅ is the value of the overall average packet 

time received based on the time moving window, while n is the amount of time in the time moving 

window. 

d. The variance of packet size (in bytes) 

Regular packet data streams produce high packet size variance values. On the other hand, DDoS attack 

packet flows produce low enough variance values close to zero due to the monotonous size of packets 

sent by bots to the target server [16]. The formula for calculating package size variances presented  

in (2). 
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𝑃𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = √
∑(𝑃𝑛−𝑃̅)2

𝑛
        (2) 

 

where Pn is the packet size received, and 𝑃̅ is the average packet size received based on the time moving 

window, while n is the number of packets in the time moving window. 

e. Packet flow speed (in bytes per second) 

The packet flow rate indicates the number of network packets sent from the the attack source to  

the target server in one time moving window as calculated by (3) [17]. 

 

𝑃𝑟𝑎𝑡𝑒 = 𝑁𝑝𝑎𝑐𝑘𝑒𝑡 𝑋 
1

𝑇𝑒𝑛𝑑−𝑇𝑠𝑡𝑎𝑟𝑡
       (3) 

 

where Npacket  is the number of packets received in one time moving window, Tend is the time value 

when the packet was received, and Tstart is the original packet sent time. 

f. Number of bytes 

Is the number of packet size values received in a pause time moving window, which is calculated by (4). 

 

𝑁𝑢𝑚𝑏𝑦𝑡𝑒 =  
∑ 𝑁𝑝𝑎𝑐𝑘𝑒𝑡 

𝑡𝑖𝑚𝑒 𝑚𝑜𝑣𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤
⁄      (4) 

 

with ∑ 𝑁𝑝𝑎𝑐𝑘𝑒𝑡  is the total size of received packets in one time moving window 

 

2.2.  Components of the ANN training function 

Some functions/algorithms can use to train ANN networks in batch mode. Functions/algorithms 

that are widely used by researchers [18, 19] 

− Newtonian training algorithm 

The Newtonian training function is a training method that can achieve convergence quickly compared to 

the gradient-conjugate method. However, on the other hand, Newtonian has a reasonably high time 

complexity because it tends to take a lot of training time to calculate the Hessian matrix in feed-forward 

ANN [20, 21]. Therefore, there is a derivative of the Newtonian method called quasi-newton (in Matlab: 

trainlm) which does not necessitate the computation of the Hessian matrix second derivative, because the 

Hessian matrix automatically updates at each iteration [22]. 

− Resilient-propagation training algorithm 

The resilient-propagation function (in Matlab: trainrp) describes to the algorithm of gradient-descent, 

which has property removing magnitude effects from the partial derivation of the activation function (e.g 

linear, sigmoid, binary sigmoid, etc.). In the neural network training mechanism, activation functions 

partial derivative is used to determine neural network-layer weight update directions, whereas the partial 

derivation magnitude of the activation function does not have a significant effect on neural network layer 

weight changes [21]. 

− Scaled-conjugate training algorithm 

The scaled-conjugate function refers to the algorithm of conjugate-gradient, where the algorithm utilizes 

the adverse direction of the gradient to fit changes in the neural network layer weight. Thus, the 

conjugate-gradient algorithm has an impact on the number of iterations needed by neural networks to 

achieve convergence [22]. 

 

2.3.  ANN layer architecture scheme 

Until now, the best neurons arrangement in the hidden layer has not been found in neural network 

architecture to solve one problem [23], although there is Kolmogorov's concept which states that the amount 

of neurons in the neural network hidden layer is 2n+1, where n is the number of input neurons [24].  

Based on these reasons, this study conducted several variation schemes on the number of neurons used in  

the neural network hidden layer, as presented in Table 1. The number of input neurons is six, according to  

the item extracted from the network packet flow feature. This study uses a neural network architecture with 

one hidden layer, arguing that a neural network with one hidden layer is sufficient to solve the problem [25]. 

The more hidden layers tend to have an impact on long training times [7]. On the output side, this study uses 

two neuron outputs representing the first condition, normal packet flow and the second condition, DDoS 

attack packet flow. The sample of the first neural network architecture, according to Table 1, shown in Figure 3. 
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Table 1. The numbers of neuron used in ANN hidden layer 

Architecture 

Numbers of 

Neurons at Input 
Layer 

Numbers of 

Neurons at 
Hidden Layer 

Numbers of 

Neurons at 
Output Layer 

1st 6 3 2 

2nd 6 6 2 
3rd 6 12 2 

4th 6 13 2 

 

 

 
 

Figure 3. The sample of the first neural network architecture layer (6-(3)-2) 

 

 

2.4.  Evaluation parameters 

The performance of the results of experiments conducted in this study will evaluate using three 

parameters, i.e.: 

− Accuracy refers to the comparison among the results of the normal packet flow detection and malicious 

(DDoS) packet flow, related to the overall packet data. 

− MSE, reflects the definite error value from the neural network actual output pattern compared to the 

desired output pattern. 

− Iteration numbers are abstractions of the amount of time required by ANN to achieve convergence. 

 

 

3. RESULTS AND DISCUSSION 

Experiments in this study carried out in the Matlab® R2015b software environment, which runs on 

a 64-bit Microsoft Windows® 10 platforms. The research involves a normal packet flow dataset and a DDoS 

attack packet flow with an amount of 1200 data for each packet flow type. Each data consists of six extracted 

features. By default, the dataset divided into three categories, 70% for training (840-row data), 15% for 

validation (180-row data), and the remaining 15% for testing (180-row data). The splitting of the dataset into 

several categories involves the random data sharing function of Matlab® R2015b (in Matlab: dividerand) to 

prevent the tendency to be biased in the training sample. Parameters used for setting up the training 

environment are epoch_max=25.10e+3; evaluation-function=MSE; goal-set=0.01, maximum-fail-train=4; 

gradient-minimum=1.00e-10; mu(µ)=1.00e+10. All result of neural network training includes accuracy, MSE, 

and iteration presented in Table 2. For simplification, the training results shown for each algorithm/function 

experiment in this paper are neural networks with 6-(13)-2 layer architecture with Quasi-Newton function 

training (in Matlab: trainlm) on Figure 4. From the results of the training presented in Figure 4, it can see that 

the neural network training did not experience overfitting conditions as indicated by the red=test, blue=train, 

and green=validation lines which decreased the value of MSE smoothly and simultaneously. 

 

 

Table 2. Training results of neural network scheme 

Architecture 
Quasi-Newton training function 

Resilient-propagation training 
function 

Scaled-conjugate training function 

Accuracy MSE Iteration Accuracy MSE Iteration Accuracy MSE Iteration 

1st (6-3-2) 0.995 0.011 52 0.972 0.042 1388 0.996 0.018 186 

2nd (6-6-2) 0.995 0.009 38 0.979 0.044 746 0.978 0.039 68 
3rd (6-12-2) 0.996 0.010 68 0.996 0.031 1045 0.993 0.030 112 

4th (6-13-2) 0.992 0.010 63 0.989 0.028 451 0.988 0.031 134 
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Figure 4. Neural network training result using Quasi-Newton function on architecture 6-(13)-2 

 

 

3.1.  Training accuracy results 

Based on the training accuracy results presented in Table 2, it concluded that the Quasi-Newtonian 

training function provides stable accuracy results on all neural network architectures, with the most 

significant accuracy value of 0.996 (99.60%) obtained from neural network structure with the hidden layer 

neurons number as much as 2n (n is the number of neuron in input layer), as presented on Table 3. 
 

 

Table 3. Confusion matrix of 6-12-2 neural network architecture with quasi newton function 

Condition 
Detected as 

Total 
Normal DDoS 

DDoS 89 1 90 
Normal 0 90 90 

Total 89 91 180 
 

 

From Table 3, we can derive : 

− Accuracy as  (TP+TN)/(TP+TN+FP+FN) 

Accuracy  =(89+90)/(89+1+0+90)  

  =0.996 

− Recall as   (TP)/(TP+FN) 

Recall  =89/(89+0)  

  =1.000    

− Precision as  (TP)/(TP+FP) 

Precision  =89/(89+1) 

  =0.988 

− F-measure  2*Recall*Precision/(Recall+Precision) 

  =2*1.000*0.988/(1.000+0.988) 

  =0.993 

The same accuracy results are also obtained by the training function of Resilient-Propagation on 

neural network architecture with the number of neurons in the hidden layer as much as 2n as well as 

presented in Table 4.  
 

 

Table 4. Confusion matrix of 6-12-2 neural network architecture with scaled conjugate function 

Condition 
Detected as 

Total 
Normal DDoS 

DDoS 90 0 90 

Normal 1 89 90 
Total 91 89 180 

 

 

From Table 4, we can derive : 

− Accuracy as  (TP+TN)/(TP+TN+FP+FN) 

Accuracy  =(90+89)/(89+1+0+90)  

  =0.996 

− Recall as   (TP)/(TP+FN) 

Recall  =90/(90+1)  

  =0.989    

− Precision as  (TP)/(TP+FP) 
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Precision  =90/(90+0) 

  =1.000 

− F-measure 2*Recall*Precision/(Recall+Precision) 

  =2*1.000*0.989/(1.000+0.989) 

  =0.994 
 

 

Unlike the highest accuracy in the Scaled-Conjugate training function, although it is 0.996 

(99.60%), the accuracy is obtained in neural network architecture with 1/2n hidden layer neurons. In general, 

the resilient-propagation and scaled-conjugate training functions have not been able to provide a stable 

accuracy value for the entire neural network architecture when compared to the Quasi-Newtonian training 

function because Quasi-Newton training functions do not need the calculation of the second derivative of  

the Hessian matrix so that it is faster in achieving convergence. 

 

3.2.  Results of mean-squared error training 

As presented in Table 2, it can conclude that the Quasi-Newton training function produces  

a MSE value that is small enough for all neural network architectures (around 0.009 to 0.011) compared to 

the resilient-propagation and scaled-conjugate functions. In addition, changes in neural network architecture 

have little impact on the Quasi-Newton training function. Conversely, changes in neural network architecture 

have a significant effect on the training resilient-propagation and scaled-conjugate model. Increasing the 

amount of neurons in the neural network hidden layer reduces the resilient-propagation MSE value, whereas 

in the scaled-conjugate function, increasing the amount of neurons in the neural network hidden layer will 

raise the value of MSE even though it is not too significant. 

 

3.3.  The results of the training iteration 

Based on the experiments carried out presented in Figure 4, it found that the neural network with  

the Quasi-Newton training function provided the least number of iterations compared to the  

resilient-propagation and scaled-conjugate training functions on all architectures. Quasi-Newton is very fast  

in achieving convergence, as seen from the small number of iterations <100. From Table 2, it can seen that 

the iteration to achieve the convergence of Quasi-Newton and scaled-conjugate functions is not very much 

influenced by the type of neural network architecture, while the resilient-propagation training function is less 

affected by neurons amount in the hidden layer, the higher neurons amount in the neural network hidden 

layer can accelerate resilient-propagation iteration convergence. 

 

 

4. CONCLUSION  

From the research that has carried out, it found that the neural network architecture of hidden layer 

neurons is 2n, (6-(12)-2) (n is the neural network input layer neurons numbers), combined with training 

function of Quasi-Newton (trainlm in Matlab) gives the best accuracy results=99.60%; recall=1.000; 

precision=0.988; f-measure=0.993. The accuracy value is the same as the accuracy obtained by neural 

network architecture with 1/2n hidden layer configuration (6-(3)-2) trained with scaled-conjugate (trainscg in 

Matlab). The Quasi-Newton training function can produce a reasonably stable accuracy value for all neural 

network architectures, while resilient-propagation also scaled-conjugate produces accuracy values that are 

less consistent for all neural network architectures in the experiment. The Quasi-Newton training function is 

also able to provide faster convergence results compared to scaled-conjugate or resilient-propagation, 

characterized by the least number of iterations. Judging from the MSE parameters, the Quasi-Newton training 

function can provide relatively low and consistent results for all neural network architectures. Whereas 

resilient-propagation also scaled-conjugate produce inverse MSE values. on scaled-conjugate, fewer neurons 

amount in neural network hidden layer tends to produce elevated MSE values, otherwise, in resilient-

propagation, MSE value tends to decrease. With the right combination of training function and neural 

network architecture, this study achieves higher accuracy (99.60%) to detect DDoS attack compared to other 

previous research regarding DDoS detection utilizing artificial neural network results that got accuracy under 

98.00%. 
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