
Bulletin of Electrical Engineering and Informatics

Vol. 10, No. 4, August 2021, pp. 2144~2151

ISSN: 2302-9285, DOI: 10.11591/eei.v10i4.2366 2144

Journal homepage: http://beei.org

Improved MSHA-1 algorithm with mixing method

Rogel L. Quilala, Theda Flare G. Quilala
College of Computer Studies, Tarlac State University Tarlac City, Philippines

Article Info ABSTRACT

Article history:

Received Mar 13, 2020

Revised Apr 29, 2021

Accepted May 24, 2021

 Recently, a modified SHA-1 (MSHA-1) has been proposed and claimed to

have better security performance over SHA-1. However, the study showed

that MSHA-1 hashing time performance was slower. In this research, an

improved version of MSHA-1 was analyzed using avalanche effect and

hashing time as performance measure applying 160-bit output and the mixing

method to improve the diffusion rate. The diffusion results showed the

improvement in the avalanche effect of the improved MSHA-1 algorithm by

51.88%, which is higher than the 50% standard to be considered secured.

MSHA-1 attained 50.53% avalanche effect while SHA1 achieved only

47.03% thereby showing that the improved MSHA-1 performed better

security performance by having an improvement of 9.00% over the original

SHA-1 and 3.00% over MSHA-1. The improvement was also tested using 500

random string for ten trials. The improved MSHA-1 has better hashing time

performance as indicated by 31.03% improvement. Hash test program has

been used to test the effectiveness of the algorithm by producing 1000 hashes

from random input strings and showed zero (0) duplicate hashes.

Keywords:

Avalanche

Hashing

Message digest

SHA

This is an open access article under the CC BY-SA license.

Corresponding Author:

Rogel L. Quilala

College of Computer Studies

Tarlac State University

San Isidro extension campus, Tarlac City, Philippines

Email: rlquilala@tsu.edu.ph

1. INTRODUCTION

Cryptographic hash algorithms perform a major part in information security-it is a basis for a secure

network which includes checking of data integrity [1], [4]. Hash algorithms are used in ensuring data

integrity [5]. In hashing, a single bit of change from the input shall produce an entirely different hash output

value [6]. A probability of 50% is the most ideal result in considering a change in the hash output, also

known as the avalanche effect, but a higher value signifies higher efficiency of the technique [7]. The

message digest or hash value produced by a hash function provides an assurance that the data during

transmission will not be altered, because it is computationally infeasible for two distinct messages to have

equal hash value [8], [9]. The hash value is the condensed representation of the message and acts as a digital

fingerprint of the message, in which only one hash value should be associated with the message [8]. If the

hash values differ, the integrity of the message is compromised. Hash is typically applied as integrity

verification of password protection, security in protocols, file transmission, tamper detection, and digital

signature [10], [11].

The algorithms under Secure Hash Standard Federal Information Processing Standards Publication

(FIPS PUB 180-4) are as follows: SHA-1, SHA-224, SHA-256, SHA-384 SHA-512, SHA-512/224, and

SHA-512/256. Outputs of these hash algorithms are 160, 224, 256, 384, 512, 224 and 256 bits, respectively

[12]. The National Institute of Standards and Technology published the cryptographic hash function Secure

Hash Algorithm 1 (SHA-1) as (FIPS PUB 180-1) [13] and still belongs to (SHS) (FIPS PUB 180-4) [12]. The

https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

 Improved MSHA-1 algorithm with mixing method (Rogel L. Quilala)

2145

SHA-1 algorithm is fast and has 160-bit output [14] and it is commonly used hash algorithm in different

applications, and is as follows: PGP, SSL/TLS, Digital Signatures, and SSH [1], [15] because of its

robustness and time efficiency [16]. In 2017, 21% of websites were recorded that SHA1 is still using for

the signing of a website’s certificate [17]. The SHA-1 with 160-bit hash value is widely used for file

fingerprint and verification [18].

SHA-1 is considered simple, fast and the most widely used hash algorithm [11] because of

robustness and time efficiency. However, it suffers from some unexpected weaknesses in the internal

function and has a low avalanche effect [1], [19]-[21] thus leading to compromised data integrity. Thus, the

modification of the hash function is essential in order to achieve higher avalanche effect diffusion [19], [22],

[23]. Enhancements on SHA-1 were made to have better diffusion [24]-[25] but the simulation of results did

not show the avalanche effect or have shown lower avalanche effect. The addition of MD5 hash to SHA-1

was also studied [22] but this approach has become suspect since MD5 has been completely broken [26]-

[27]. Another study enhanced SHA-1 by modifying the message digest to increase the avalanche effect, but

results revealed an avalanche effect that is lower than the ideal standard of 50% and has not included the

actual messages used [28]. Another study has enhanced and modified the SHA-1 algorithm (MSHA-1). The

study increased the hash value by adding 32-bit and modified the internal function in attaining better

diffusion. Testing showed better diffusion, but hashing time of MSHA-1 was slower by 312.50% [29].

This study improves the MSHA-1 by modifying the output bits from 192-bit to 160-bit, with the

purpose of improving the hashing time and keeping the mixing method in the compression function. The

specific objectives were as follows: To determine the avalanche effect of the hashing algorithm with 160-bit

output and mixing method; to evaluate the improvement of enhanced MSHA-1 over the MSHA-1 in terms of

avalanche effect; to compare the performance of improved MSHA-1 against the MSHA-1 in terms of hashing

time; to test the effectiveness of the improved MSHA-1 by using a hash test program. The main contribution

of this work is beneficial to other researchers, because the improvement made on the MSHA1 by modifying

the output 192-bit to 160-bit and the increase of avalanche effect of the improved MSHA-1, therefore when

used as the hashing mechanism in their chosen application, will increase security and hashing time performance.

2. RESEARCH METHOD

2.1. Modification of MSHA-1 algorithm design

a. Modification on MSHA-1 was incorporated and described in detail below. The improved MSHA-1 160-

bit hash value with the mixing method

The modification on MSHA-1. The working 32-bit variables A, B, C, D, E were used to produced

160-bit hash value, and the mixing method is used in every round to the compression function. This method

will accept input from variables A, C, and D, and will have a new value to the output variables A’, C’, and

D', as shown in Figure 1.

Figure 1. Improved MSHA-1 algorithm with the mixing method

b. The improved MSHA-1 algorithm process

− The padding of the message:

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 4, August 2021 : 2144 – 2151

2146

The length in multiple of 512 bits is the padded message. Number one (1) followed by zero (0) bit

was added to the original message, and zero (0) number will depend on the message’s original length. The

binary representation of the original message’s length is the last 64 bits of the previous 512-bit block.

− The constants and functions:

The Key0, Key1, Key2 … Key79 and logical functions funct0, funct1 to funct79 were used as

constant words, and each funct, 0 ≤ t ≤ 79, the operation of three (3) 32-bit words and the output is 32-bit

word. The functions and the constants used is shown as:

funct(B,C,D) = (B && C) || ((! B) && D)

0 ≤ t ≤ 19
Keyt = 5A827999

funct(B,C,D) = B ^ C ^ D
20 ≤ t ≤ 39

Keyt = 6ED9EBA1

funct(B,C,D) = (B && C) || (B && D) || (C && D)
40 ≤ t ≤ 59

Keyt = 8F1BBCDC

funct(B,C,D) = B ^ C ^ D
60 ≤ t ≤ 79

Keyt = CA62C1D6

− Computing the 160 Message Digest with mixing method:

a. The 16 words (Mi) were split by using these variables, W0, ... W15

b. When t = 16 to 79, do Wt =S1(Wt-3 XOR Wt-8 XOR Wt-14 XOR Wt-16).

c. Then let A=H1, B=H2, until E=H5, counter = m

d. Set t=0 then do the following until t=79

mix= mixing(A, C, D)

A’=mix;C’=mix;D’=mix

T1 = S5(A) + ft (B, C, D) + E + Wt + Kt;

E = D’; D = C’; C = S30(B); B = A’; A =T1

e. nb+= m, then do H1 = (H1 + A) ^ nb, H2 = (H2 + B) ^ nb, H3 = (H3 + C) ^ nb, H4 = (H4 + D) ^ nb, H5 =

(H5 + E) ^ nb,
f. The algorithm will produce 160-bit hash value.

2.2. Testing

2.2.1. Avalanche effect with the use of mixing method

The MSHA-1 algorithm was modified using visual basic for applications (VBA). From here, the

modifications were inserted. Different message sets were considered during the evaluation of improved

MSHA-1. From these different message sets, the avalanche test was performed. Avalanche effect

computation is shown in (1) and (2).

𝑃 = (
𝐵̅

𝑙
) × 100% (1)

𝐵̅ =
1

𝑁
∑ 𝐵𝑖

𝑁
𝑖=1 (2)

2.2.2. Improvement of modified SHA-1 over SHA-1 using different message sets

a. Message sets

For performance analysis, the study considered different message sets during the testing.

Description of the various message sets was as follows:

Message set 1: message input of 1-bit change.

First message:

“@AA

AAAAA”.

Second message:

"CAAA

AAAA”[22].

Message set 2: Difference in only a few bits using the 64-character message set. Dissimilar characters were

inserted at the 1st, 33rd, and 64th as shown in Table 1 [30].

Message set 3: Input 1:“abc123_owlstead_1255” and Input 2 “abc123_owlstead_59131” [31].

Message set 4: length differences as input [32], The message pattern was as follows: “a”, ”a a” and “a a a”.

The message pattern was shown in Table 2.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

 Improved MSHA-1 algorithm with mixing method (Rogel L. Quilala)

2147

Message 5: Strings of a random message. The message was tested with the following input of characters

0...9, a...z, and A... Z from 500 random strings generated hash values [33].

Message set 6: Common substrings arranged in different orders, as shown in Table 3 [32].

Table 1. 64-character message set in difference of a few bits
No. Message Input

1 @AAA
2 CAAA

3 EAAA

4 IAAA
5 QAAA

6 aAAA

7 AAA
8 ÁAAA

9 AA

10 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA@AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
11 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

12 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

13 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
14 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

15 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

16 AAA
17 AAA@

18 AAAC

19 AAAE
20 AAAI

21 AAAQ

22 AAAa
23 AAA

24 AAAÁ

Table 1. The length different
No. Message Input

1 a

2 a a

23 a

24 a

Table 3. Common substrings arranged in different orders
No. Message Input

1 The quick brown fox jump over the lazy dog

2 quick brown fox jump over the lazy dogThe
3 brown fox jump over the lazy dogThe quick

4 fox jump over the lazy dogThe quick brown

5 jump over the lazy dogThe quick brown fox
6 over the lazy dogThe quick brown fox jump

7 the lazy dogThe quick brown fox jump over

8 lazy dogThe quick brown fox jump over the
9 dogThe quick brown fox jump over the lazy

10 dog lazy the over jump fox brown quick The

11 The dog lazy the over jump fox brown quick
12 quick The dog lazy the over jump fox brown

13 brown quick The dog lazy the over jump fox

14 fox brown quick The dog lazy the over jump
15 jump fox brown quick The dog lazy the over

16 over jump fox brown quick The dog lazy the

17 the over jump fox brown quick The dog lazy
18 lazy the over jump fox brown quick The dog

19 The dog quick lazy brown the fox over jump

20 dog quick lazy brown the fox over jump The
21 quick lazy brown the fox over jump The dog

22 lazy brown the fox over jump The dog quick

23 brown the fox over jump The dog quick lazy
24 the fox over jump The dog quick lazy brown

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 4, August 2021 : 2144 – 2151

2148

b. Avalanche effect

The average avalanche effect of the improved MSHA-1 was compared to MSHA-1 and original

SHA-1 using the different message sets. The experimental design was shown in Table 4. For each type of

message, the avalanche percentage was computed for improved MSHA-1, MSHA-1, original SHA-1.

Table 4. Experimental design
Message Type

1 1-bit change
2 The difference in a few bits

3 The difference in the last few bits

4 Length difference (24 Messages)
5

6

500 Random strings

Common substrings arranged in different orders

The percentage of improvement was also calculated to show a comparison in percentage. To

calculate the percentage of change, the following formula is:

% 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟−𝑁𝑒𝑤 𝑛𝑢𝑚𝑏𝑒𝑟

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟
× 100% (3)

2.2.3. Performance of improved MSHA-1 over MSHA-1 in terms of hashing time

Hashing time was also recorded using 500 random strings for ten trials (n=10). The average time

was computed in milliseconds.

3. RESULTS AND DISCUSSION

3.1. Avalanche effect improved MSHA-1 160-bit hash value

The avalanche effect was computed using different message sets. The results were shown in

Figure 2. The avalanche effect average of three algorithms. The results showed that the improved MSHA-1

was higher than the 50% ideal value by having 51.88%. The increase in the avalanched effect was due to the

improvement and modification made.

Figure 2. Average avalanche effect of improved MSHA1, MSHA-1 and SHA-1

3.2. Enhancement of improved MSHA-1 over MSHA-1 using message sets

3.2.1. Avalanche effect

Table 5 shows the avalanche percentage of the different message sets. For message type one, the

improved MSHA-1 achieved 51.88%, while MSHA1 obtained 51.56%, and SHA-1 got 45.63%, as seen in

Table 4. For message type two, the avalanche effect of the improve MSHA-1 acquired 50.49%, while

MSHA-1 attained 50.09%, and SHA-1 got 48.37%. For message three, the improved MSHA-1 achieved

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

 Improved MSHA-1 algorithm with mixing method (Rogel L. Quilala)

2149

57.50%, which was very much higher than the 50% ideal value, while MSHA-1 got 50.00% and SHA-1 got

only 38.75%, which was extremely lower than the ideal value. For message type four, the improved MSHA-1

achieved 50.49%, MSHA-1 attained 51.13%, and SHA-1 got 49.76%. For message type five, the improved

MSHA-1 achieved 49.99%, and MSHA-1 got 50.19%, and SHA-1 attained 49.90%. Lastly, for message type

6, the improved MSHA-1 achieved 50.95%, while MSHA-1 attained 50.23%, and SHA-1 got 49.76%.

Improved MSHA-1 has better security performance by having an avalanche effect improvement of 9% over

SHA-1 and 3% over MSHA-1, as shown by the average avalanche value of 51.88% using the improved

MSHA-1, 50.53% using the MSHA-1 and 47.03% using SHA-1.

Table 5. Avalanche effect of different message sets of MSHA-1, SHA-1 and improved MSHA-1

Message Type
Avalanche effect (%)

MSHA-1 SHA-1 Improved MSHA-1

1 1-bit change 51.56% 45.63% 51.88%
2 The difference in only a few bits 50.09% 48.37% 50.49%

3 The difference in the last few bits 50.00% 38.75% 57.50%

4 Length difference (24 Messages) 51.13% 49.76% 50.49%
5 500 Random strings 50.19% 49.90% 49.99%

6 Common substrings arranged in different orders 50.23% 49.76% 50.95%

 Average (%) 50.53% 47.03% 51.88%

The hash function test program was used to test the effectiveness of the improved MSHA-1, as

shown in Figure 3 [34]. The function will count the duplicate hash values of the one thousand inputted hashes

that have been produced by the improved MHSA-1. Based on the output, it was clearly shown that there were

no duplicates hash values found from the hash values produced by the improved MSHA-1 algorithm.

Figure 3. Improved MSHA-1 hash function test

3.3. Performance of MSHA-1 vs SHA-1 in terms of hashing time

Hashing time was also recorded using 500 random strings for ten trials (n=10). The average time

was computed in milliseconds. Figure 4 shows the average hashing time of the improved MSHA-1 and

MSHA-1. The time difference of the improved MSHA-1 and MSHA-1 was computed using 500 random

strings as a message set. Time was noted for ten trials, as shown in Table 6. The average time noted for

improved MSHA-1 was 878.85ms, while MSHA-1 was 1151.52ms. The hashing time of improved MSHA-1

has better hashing time performance, as indicated by a 31.03% improvement.

Figure 4. Average hashing time of the 24 messages in milliseconds

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 4, August 2021 : 2144 – 2151

2150

Table 6. Average hashing time of the 500 random strings in milliseconds
Trials n=10 MSHA-1 Improved MSHA-1

1 1484.38 765.63
2 1109.38 953.13

3 1007.81 968.75

4 1015.63 867.19
5 1078.13 843.75

6 1023.44 882.81

7 1085.94 828.13
8 1031.25 875.00

9 1156.25 828.13

10 1523.00 976.00
Average (ms) 1151.52 878.85

4. CONCLUSION

From the summary of findings and results presented in the previous section, the following can be

concluded that improved MSHA-1 with 160-bit hash value and using the mixing method resulted in an

avalanche effect of 51.88%. Compared to the original SHA-1 and MSHA-1, the improved MSHA-1

performed better by having an avalanche effect improvement of 9.00 % over the SHA-1 and 3% over

MSHA-1. Compared to the MSHA-1, the hashing time of improved MSHA-1 has a better performance by

having a 31.03% improvement. The improved MSHA-1 showed no duplicates using the hash test program.

These results show that the modification and improvement made on the MSHA-1 algorithm enhanced

security and improved the hashing time performance. As an offshoot of this study, further researches may be

undertaken by modifying MSHA-1 hash through lessening the number of rounds to improve more the

hashing time performance.

REFERENCES
[1] N. Kishore and B. Kapoor, “Attacks on and advances in secure hash algorithms,” IAENG Int. J. Comput. Sci., vol.

43, no. 3, pp. 326-335, 2016.

[2] M. A. Alahmad, “Design of a New Cryptographic Hash Function - Titanium,” Indones. J. Electr. Eng. Comput.

Sci., vol. 10, no. 2, pp. 827-832, 2018, doi: 10.11591/ijeecs.v10.i2.pp827-832.

[3] K. M. Lee, K. M. Lee, and S. H. Lee, “Remote data integrity check for remotely acquired and stored stream data,”

J. Supercomput., vol. 74, no. 3, pp. 1182-1201, 2018, doi: 10.1007/s11227-017-2117-4.

[4] D. Wang, Y. Jiang, H. Song, F. He, M. Gu, and J. Sun, “Verification of Implementations of Cryptographic Hash

Functions,” IEEE Access, vol. 5, pp. 7816-7825, 2017, doi: 10.1109/ACCESS.2017.2697918.

[5] I. Alsmadi and M. Zarour, “Online integrity and authentication checking for Quran electronic versions,” Appl.

Comput. Informatics, vol. 13, no. 1, pp. 38-46, 2017, doi: 10.1016/j.aci.2015.08.001.

[6] H. Liu, A. Kadir, and J. Liu, “Keyed Hash Function Using Hyper Chaotic System with Time-Varying Parameters

Perturbation,” IEEE Access, vol. 7, no. c, pp. 37211-37219, 2019, doi: 10.1109/ACCESS.2019.2896661.

[7] G. K. Sodhi and G. S. Gaba, “An efficient hash algorithm to preserve data integrity,” J. Eng. Sci. Technol., vol. 13,

no. 3, pp. 778-789, 2018.

[8] R. P. Arya, U. Mishra, and A. Bansa, “A Survey on Recent Cryptographic Hash Function Designs,” Int. j. emerg.

trends technol. comput. sci., vol. 2, no. 1, pp. 1-6, 2013, doi: 10.1.1.587.7541.

[9] X. Wang, S. Wang, N. Wei, and Y. Zhang, “A Novel Chaotic Image Encryption Scheme Based on Hash Function

and Cyclic Shift,” IETE Tech. Rev. (Institution Electron. Telecommun. Eng. India), vol. 36, no. 1, pp. 39-48, 2019,

doi: 10.1080/02564602.2017.1393352.

[10] W. Chankasame and W. San-Um, “A chaos-based keyed hash function for secure protocol and messege

authentication in mobile ad hoc wireless networks,” in 2015 Science and Information Conference (SAI), Jul. 2015,

pp. 1357-1364, doi: 10.1109/SAI.2015.7237319.

[11] R. K. Ibraheem, R. A. J. Kadhim, and A. S. H. Alkhalid, “Anti-collision enhancement of a SHA-1 digest using AES

encryption by LABVIEW,” 2015 World Congr. Inf. Technol. Comput. Appl., pp. 1-6, 2015, doi:

10.1109/WCITCA.2015.7367044.

[12] Q. H. Dang, “Secure Hash Standard,” Gaithersburg, MD, Jul. 2015. doi: 10.6028/NIST.FIPS.180-4.

[13] NIST, “FIPS 180-1 - Secure Hash Standard,” FIPS PUB 180-1, no. April 17, 1995.

[14] P. Garg and N. Tiwari, “Performance Analysis of SHA Algorithms (SHA-1 and SHA-192): A Review,” Int. j.

comput. technol. electron. eng., vol. 2, no. 3, pp. 130-132, 2012.

[15] T. Mantoro and A. Zakariya, “Securing E-mail Communication Using Hybrid Cryptosystem on Android-based

Mobile Devices,” TELKOMNIKA (Telecommunication, Comput. Electron. Control.), vol. 10, no. 4, pp. 827-834,

2012, doi: 10.12928/telkomnika.v10i4.397.

[16] K. Saravanan and A. Senthilkumar, “Theoretical Survey on Secure Hash Functions and issues,” International

Journal of Engineering Research & Technology, vol. 2, no. 10, pp. 1150-1153, 2013.

[17] Venafi, “Venafi Research: Twenty-One Percent of Websites Are Still Using Insecure SHA-1 Certificates and

Putting Users at Risk,” Venafi Press Release, 2017. https://www.venafi.com/news-center/press-release/venafi-

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

 Improved MSHA-1 algorithm with mixing method (Rogel L. Quilala)

2151

research-twenty-one-percent-of-websites-are-still-using-insecure.

[18] M. Stevens and D. Shumow, “Speeding up detection of SHA-1 collision attacks using unavoidable attack

conditions,” USENIX Secur., vol. 2017, p. 173, 2017, [Online]. Available: http://dblp.uni-

trier.de/db/journals/iacr/iacr2017.html#StevensS17.

[19] A. Kumarkasgar, J. Agrawal, and S. Shahu, “New modified 256-bit MD5 Algorithm with SHA Compression

Function,” Int. J. Comput. Appl., vol. 42, no. 12, pp. 47-51, Mar. 2012, doi: 10.5120/5748-7956.

[20] P. Karpman, T. Peyrin, and M. Stevens, “Practical Free-Start Collision Attacks on 76-step SHA-1,” Annual

Cryptology Conference, vol. 2012, 2015.

[21] X. Wang, Y. L. Yin, and H. Yu, “Finding Collisions in the Full SHA-1,” Adv. Cryptol. - CRYPTO 2005, no.

90304009, pp. 17-36, 2005, doi: 10.1007/11535218_2.

[22] G. Gupta and S. Sharma, "Enhanced SHA-192 Algorithm with Larger Bit Difference," 2013 International

Conference on Communication Systems and Network Technologies, 2013, pp. 152-156, doi:

10.1109/CSNT.2013.42.

[23] X. Xu, Q. Zhao, and C. Li, “Advanced Framework for Iterative Hash Functions,” 2012 Int. Conf. Comput. Sci.

Electron. Eng., pp. 599-602, 2012, doi: 10.1109/ICCSEE.2012.140.

[24] C. C. G. San Jose, B. T. Tanguilig III, and B. D. Gerardo, “Enhanced SHA-1 on Parsing Method and Message

Digest Formula,” Proceedings of the Second International Conference on Electrical, Electronics, Computer

Engineering and their Applications (EECEA2015), Manila, pp. 1-9, 2015.

[25] L. Thulasmani and M. Madheswaran, “Security and Robustness Enhancement of Existing Hash Algorithm,” 2009

Int. Conf. Signal Process. Syst., pp. 253-257, 2009, doi: 10.1109/ICSPS.2009.49.

[26] X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD.,”

IACR Cryptol. ePrint Arch., vol. 5, no. October, pp. 5-8, 2004, [Online]. Available:

http://web.mit.edu/fustflum/documents/crypto.pdf.

[27] X. Wang and H. Yu, “How to Break MD5 and Other Hash Functions,” Adv. Cryptol. - EUROCRYPT 2005, pp. 19-

35, 2005, doi: 10.1007/11426639_2.

[28] S. Verma and G. S. Prajapati, “Robustness and security enhancement of SHA with modified message digest and

larger bit difference,” 2016 Symp. Colossal Data Anal. Netw., pp. 1-5, 2016, doi: 10.1109/CDAN.2016.7570959.

[29] R. L. Quilala, A. M. Sison, and R. P. Medina, “Modified SHA-1 Algorithm,” Indones. J. Electr. Eng. Comput. Sci.,

vol. 11, no. 3, pp. 1027-1034, 2018, doi: 10.11591/ijeecs.v11.i3.pp1027-1034.

[30] H. M. Elkamchouchi, M. E. Nasr, and R. I. Abdelfatah, “A new secure and fast hashing algorithm (SFHA-256),” in

2008 National Radio Science Conference, Mar. 2008, no. Nrsc, pp. 1-8, doi: 10.1109/NRSC.2008.4542348.

[31] M. Bodewes, “SHA-1 Collision for First 32-bits for Two Different Message,” 2016, [Online]. Available:

https://crypto.stackexchange.com/questions/34575/sha1-collision-for-first-32-bits-for-two-different-messages.

[32] C. Estébanez, Y. Saez, G. Recio, and P. Isasi, “Performance of the most common non-cryptographic hash

functions,” Softw. Pract. Exp., vol. 44, no. 6, pp. 681-698, Jun. 2014, doi: 10.1002/spe.2179.

[33] “Text Mechanic - Random String Generator Tool.” [Online]. Available: https://textmechanic.com/text-

tools/randomization-tools/random-string-generator/

[34] N. Mudge, “Hash Function Test Program,”. [Online]. Available:

https://gist.github.com/david7482/80c8c3c8962c1621c072

BIOGRAPHIES OF AUTHORS

Dr. Rogel L. Quilala is an assistant Professor of ICT at the Tarlac State University-College of

Computer Studies. He received his Doctor in Information Technology (DIT) degree from

Technological Institute of the Philippines (TIP). He has published several research papers in

Scopus-indexed journals. He has also presented several papers in international conferences and

has been awarded Best in Presentation at the 2nd International Conference on Imaging, Signal

Processing and Communication (ICISPC 2018) in Kuala Lumpur, Malaysia.

Dr. Theda Flare G. Quilala is currently an Associate Professor in the College of Computer

Studies at Tarlac State University, Tarlac City, Philippines. A Doctor of Information

Technology graduate at Technological Institute of the Philippines and a CHED K-12 scholar.

Research interest includes security, data mining, and algorithms.

