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 The major drivers of the quest for optimal placement of flexible alternating 

current transmission system (FACTS) devices are the quest for smart grids 

and economic indicators. The demand for energy and power stability will 

continue much as the astronomic growth in industries and increase in global 

population remains. The aim of this paper is to deliver a panoramic view of 

the use of static synchronous compensator (STATCOM) in combination 

with energy storage system (ESS) in order to enhance power stability.  

In this paper, it was observed that application of ESS is an important factor 

in attaining power stability and mitigating the effect of dynamics associated 

with the power supply system. The miniaturization of batteries and 

adequate placement of STATCOMs will be a challenge much as new power 

system are built or existing ones are expanded. The future of ESS is 

towards the adoption of renewable energy sources as against batteries. 
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1. INTRODUCTION 
Population and economic growth result in increase in the demand of electricity load type and 

capacity. Industrial and domestic expansions are few among other challenges of power quality. This in turn 
affect the reactive power and harmonic disturbances which constitute serious threat to the safe operation of 
power grid [1]. This results in electric power infrastructure that has served huge loads for so long and 
susceptive to many limitations. Out of many challenges it is to operate the power system in secure manner so 
that the operation constraints are fulfilled under both normal and contingent conditions. The break in energy 
supply called for smart grid technology and valuable techniques that can be deployed within the very near 
financial and technical constraints. Such technique must be effective for implementation to justify the time  
and financial implications [2]. 

The competitiveness nature of the energy market equally places heavy demand for load on the grid. 
This makes the grid to operate very close to its maximum capacity [3]. Therefore, congestions may occur due 
to unexpected line outage, generator outage, sudden increase of demand, and failures of equipment’s.  
This made network congestion one of the major concerns for smart grids. Specifically, when a smart grid  
is implemented, it is possible to obtain measurements throughout the grid to identify and implement  
the necessary control actions in sub-second time frames. Thus, voltage instability and collapse that may lead to 
the blackout can be avoided, if suitable monitoring is used and application of a preventive control is taken. 

https://creativecommons.org/licenses/by-sa/4.0/
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This is where the flexible AC transmission systems (FACTS) devices that have proffer solution to solve 
various power system problem comes handy [2]. 

While tracing the progress of power system and oscillation control techniques, the study conducted 

by Tyll and Schettler in [4] observed that, the milestones as presented in Figure 1. Where at point 1, between 

the years 1911 and 1929, only 110 kV of power has been controlled and the result was conducted by 

Lauchhammer-Riesa, in a study conducted in Germany. In the second stage of the chart, it is clear that the 

system has been improved by the work conducted by Brauweiler-Hoheneck in 1929, which was able to 

manage 220 kV. In addition, the study conducted by Boulder Dam in 1932 revealed that the power 

management system was only able to handle 287 kV. The progress made was leveraged upon by the 

Harspranget-Halsberg study in Sweden in 1952. This was termed as the 4
th

 generation in the ladder of power 

system control, where the power output management ability increased to 380 kV. The latter study which was 

done in Montreal by Manicougan and was tagged as the 5
th
 generation on the ladder of harmonic management 

technology. In 1965, the manageable quantity of power was 735 kV. However, the quality has not been in the 

peak of what was expected. The value addition in the study conducted by Ekibastuz-Kochetav in Russia 

created a platform for the 6
th

 generation of power system management which manifested in 1985. The energy 

stability system could handle about 1200 kvar. The above history reveals the background for the current 

situation and points towards the future [4]. In addition, consumers of electrical energy and its generation 

typically are not located in close vicinity. Large cities as well as large industrial areas are often supplied from 

distant located generation stations. The transmission of the power along a distance in the grid requires a stable 

system and voltage profile, which can only be maintained with the application of static synchronous 

compensator (STATCOM). This system is made of components of Var sources (capacitances, inductances) [4, 5]. 

 

 

 
 

Figure 1. Increase of transmission system voltages over the years milestones [4] 
 

 
Ma et al. [6] opined that quest was to control the reactive power in transmission and distribution. 

STATCOM, as an important member of the FACT, has gained acceptance and the attention of researchers 
more than ever. This system was listed as the state-of the-art dynamic shunt compensator. This system is built 
of sophisticated technology and excellent performances in smooth reactive power regulation and fast dynamic 
characteristics. This made it attract the interest of foreign and domestic electrical engineers in comparative 
with the traditional synchronous condenser. Hassan et al. [2] reported that the system was made public through 
a literature for the first time in 1989 when Narian Hingorani defined FACTS as “The concept of using solid-
state power electronic devices mainly thyristor for power flow control at transmission level”. The technology 
involved in the transmission of electrical power and electronic has advanced over a long period. Electricity 
transformation was to be done in order to derive the maximum benefit using flexible control systems in the energy 
storage. The earlier practice was to use the unreliable methods before the advent of this technology where a 
medium voltage (MV) or low voltage (LV) distribution networks is typically exercised through transformer tap-
changers and/or switched capacitors/reactors. Lately, a STATCOM is used for fast and precise voltage regulation, 
especially for the sensitive/critical loads [7].  

IEEE defined STATCOM as a self-commutated switching power converter supplied from an 
appropriate electric energy source and operated to produce a set of adjustable multiphase voltage, which may 
be coupled to an AC power system for the purpose of exchanging independently controllable real and reactive 
power. The controlled reactive compensation in electric power system is usually achieved with the variant 
STATCOM configurations. The STATCOM has been defined as per CIGRE/IEEE considering three operating 
structural components. First component is static: based on solid state switching devices with no rotating 
components; second component is synchronous: analogous to an ideal synchronous machine with 3 sinusoidal 
phase voltages at fundamental frequency; third component is compensator: provided with reactive 
compensation [6]. In literature, most of the methods proposed for sizing the FACTS devices only consider the 
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normal operating conditions of power systems. Consequently, some transmission lines were heavily loaded in 
contingency case and the system voltage stability becomes a power transfer-limiting factor [2]. To this end, an 
integration of ESS and STATCOM with two control loops including power-angle control and voltage 
control, which could exchange power flexibly and equally economically was reported to be a better option in 
the study conducted by Gao et al. [8]. The STATCOM based on voltage source inverter and battery energy 
storage system (BESS) formed an amalgamation of the STATCOM/BESS. When combining the two 
technologies, a three-phase structure [8] is applicable. However, the challenge of optimal placement and sizing 
of the STATCOM in combination with the battery storage device lingers. Energy storage system (ESS) can 
increase system reliability and dynamic stability, improve power quality and enhance transmission capacity of 
the transmission grid in a high power application [9]. A combination of short-term (cycles to seconds) energy 
storage integrated with a FACTS controller, was reported to be sufficient in high power application.  

The areas of application of STATCOMs in the operation and control of a power grids are erroneous. 

It is used in schedule of power flow, reduction in the quantity of unsymmetrical components installed to damp 

power fluctuations. In addition, it support the stability of transient in the system [10, 11]. When compensators 

are in operation, at times of generation shortfall or network constraint, the voltage of the non-critical loads is 

reduced while regulating the voltages across the critical loads. This addresses the generation shortfall or 

network constraint and also facilitates better voltage regulation of the critical loads through manipulation of 

the supply impedance voltage drop [7]. The relevance of the STATCOM when in operation is majorly to 

control the power system dynamics. This is achieved by providing a damping against power system 

oscillations. It equally extends to the damping of sub synchronous oscillations with the aim of providing 

balance in loading of individual phases. STATCOM also improve the transient stability margin and steady-

state power transfer capacity; reduction of temporary over-voltages; and effective voltages regulation and 

control. Reduction of rapid voltages fluctuations were among other uses of the STATCOM [6, 12-14]. In 

addition, an ESS offers the following distinct advantages:  

a. Provides system damping, while maintaining constant voltage following a disturbance.  

b. It could control both active and reactive power simultaneously and independently. 

c. It could charge batteries by absorbing active power from the grid. 

d. It was rated higher because of multilevel topology. 

e. It is capable and effective of damping the power oscillation. 

f. It supports the system voltage during and after a disturbance [15]. 

g. Provides additional damping in situations where the dynamic reactive power provided by traditional 

FACTS controllers with similar ratings is inadequate.  

h. Alternatively, it could provide the same amount of damping at less cost. Damping of oscillation, by 

repeatedly interchanging small amounts of real power with the system, would be an excellent ESS 

application.  

i. Provides energy to maintain the speed of locally connected induction motors during a power system 

disturbance. This may prevent a voltage collapse in areas where there is a large concentration of induction 

motors that would otherwise stall [16]. 
 
 

2. STATE-OF-THE-ART ON STATCOM 
Innovations targeted at achieving stability in the grid against the dynamics, voltage sourced 

converter (VSC) technology for reactive power compensation (RPC) and power surges had gone through 

developmental stages. Efforts were geared towards increasing system support in case of under voltages, 

higher speed of response to compensate flicker. The miniaturization of the design and easy reloadability, less 

harmonic interaction with the power system were also improved upon [15]. Today, there are different 

technical solutions on the market which may be summarized as multi converter concepts, high voltage PWM 

converters or multilevel converters [4, 17]. Due to the advantages for high power applications as 

aforementioned, multi-level converters have been introduced to FACTS to enhance power transmission system 

operation. Although several multi-level STATCOM topologies have been proposed to verify the high 

performance of multi-level converters used in reactive power compensation, they are not capable of 

controlling active power flow. To make multi-level converters more flexible and effective for active power 

flow control, energy storage systems are incorporated into STATCOM, such as flywheels and batteries [18] 

the inclusion of a battery to the storage system was tagged BESS. 

 

 

2.1.  Generation of reactive power compensation; first generation 
The First Generation of reactive power compensators were the mechanically switched devices. They 

include: (i) Fixed shunt reactor (FR) [13], (ii) Fixed shunt capacitor (FC) [7], (iii) Mechanical switched shunt 
reactor (MSR) [19] and (iv) Mechanical switched shunt capacitor (MSC) [19, 20].  
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2.2.  The second generation   
The second generation of power compensators operate on a self-commutated solid-state voltage 

source inverter with the use of thyristor-based devices [15]. The identifiable categories are: (i) Thyristor 
controlled Reactor (TCR) [4], (ii) Thyristor switched capacitor (TSC) [4], (iii) Static Var compensator (SVC), 
(iv) Thyristor switched series compensator (Capacitor or reactors) (TSSC/TSSR), (v) Thyristor controlled 
series compensator capacitors or reactors (TCSC/TCSR), (vi) Thyristor controlled braking resistors (TCBR), 
(vii) Thyristor controlled phase shifting transformers, (viii) (TCPST), and (ix) Line commutated converter 
compensator (LCC) [12].  

 

2.3.  Third generation power compensators 
With the shortcomings observed in the second generation of power compensators, the third 

generation was developed with emphasis on converting technology [13]. These include: (i) Converter-based 

devices, (ii) Static synchronous compensator (STATCOM), (iii) Static synchronous series compensator 

(SSSC) [12, 21], (iv) Unified power flow controller (UPFC) [21, 22], (v) Interline power flow controller 

(IPFC) [23] and (vi) Self commutated compensator (SCC) [12]. The improvement through the generations of 

the energy compensators had impact in the smooth delivery and compensation of losses along the grid, but 

was not sufficient in providing the optimum power compensation as a result of the complexity on the grid 

and supply system. The direction is towards automation and reliability. Basically, the research focus is on the 

STATCOM with the simple configuration as presented in Figure 2. Choosing the optimal location and size of 

the FACTS devices to get benefits in terms of improvement of voltage stability is a challenging task. 

From this basic structure, different topologies of STATCOM have been proposed based on 

switching devices, the type of converter used and control applied for the STATCOM and its DC voltages [1]. 

The implication here is that several parameters affect the optimality and performance of the STATCOM.  

The works in [6] and [9] concentrated on switching devices. Converters in operation were studied by [24] and [25] 

while Du et al. [26], Muñoz et al. [15] and [20] concentrated on control in operation. Since the topology and 

other variables of the STATCOM are affecting the operations of the system in the power grid, it is important 

to establish a modus operandi aimed at having a realistic cost estimate, in order to do this, Chakraborty et al. 

[14] proposed the following steps for consideration. 

a. First, system issue(s) to be addressed must be properly identified with specifications. 

b. The information gathered will be used to study of preliminary system characteristics. 

c. The basic energy storage, power, voltage, and current requirements would be identified and outlined. 

d. A cost/effect of the system would be done to assess the financial benefits from the integration of 

thesystems to determine adequacy of utility’s return on investment. 

e. Model system performance in response to system demands to establish eff ectiveness of the energy 

support to be provided. 

f. Optimize integrated system specifications and determine system cost. 

g. A final comparative analysis of various energy storage systems are performance and costs. 
 

 

 
 

Figure 2. The basic structure of STATCOM [6] 
 

 

Considering the aforementioned cumbersome process, the cost of conducting the assessments may 

be very expensive. In fact, the main challenge is the determination of the optimal size of STATCOM. 

Researchers’ opinion was to simulate the process on a standard IEEE bus system. This opinion followedthe 

research conducted by Verayiah et al. [27-32]. Doing the simulation, it is expected that the bus with the weak 
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link be determined for optimum intervention. In order to determine the optimal size of STATCOM which is 

optimally placed at the weak bus, various capacities of STATCOM in the range of 1 to 5 p.u. have been 

considered in the IEEE bus [33]. The practice was to transfer the result of simulation to the transmission line 

applications. Although, there are other FACTS, most studies concentrated on STATCOM because of the 

edges it has over others [4, 34]. However, the utilization of STATCOM technology alone may not be 

sufficient, since there is failure at intervals where energy back-ups are required. These backups may be 

informed of batteries and solar sources to serve as storage and augment for the expected losses or even 

absorb some excesses as a result of power surge. 

 

 

3.  STATCOM+ESS CONNECTION  

The combination of a STATCOM and ESS presents a unique configuration to improve on the 

aforementioned advantages offered by STATCOM technology. The purpose of integrating ESS with 

STATCOM was to improve the resilience and efficiency of power delivery systems by employing advanced 

control, communications, and analytics Farraj et al. [20]. The drive for incorporation of ESS was to 

implement smart grid systems to facilitate the integration of energy resources and distributed storage. There 

are contemporary economical, technical, and environmental factors which have motivated growth in small-

scale external ESSs that include both distributed generation and storage units. The appropriate integration of 

ESSs into power systems requires the study of suitable distributed control approaches [20]. The reason for 

this approach is to derive the maximum benefit from the power grids. A common approach for incorporating 

the ESS in modeling of control design is to use a first-order model for input-output modeling of ESS. This is 

represented in (1) with P ref and Q ref as the input. The circuit diagram is presented in Figure 3. During the 

modelling, the output power of the ESS is determined by changing these reference set points [35].  

 
    

    
 

  

     
         (1) 

 

 

 
 

Figure 3. STATCOM + ESS connected to power utility system [14] 
 

 

Rostami and Lotfifard [35] in their study proposed a control system based on the optimality 

condition decomposition (OCD) used in coordinating the subsystems. The study utilized actuators from 

mechanical power and field voltage controller of synchronous generator, and ESS which are able to provide 

synchronizing power support. After which, the performance of the proposed transient stability controller was 

studied using the New England 68-bus test system. They concluded that the simulation showed an effective 

to improve the angle stability of power systems subsequent to severe disturbances in the system. Turbine 

governor, ESS, and field voltage exciter of synchronous generators were used as actuators. Cheng et al. [34] 

studied the ESSs integrated with conventional and multi-level bidirectional power converters to be 

implemented on a hybrid STATCOM/ESS. The aim was to develop a conventional, diode-clamped, and 

cascaded multilevel converter-based STATCOM/ESSs and evaluate their performances for a variety of 

power system applications. A similar study conducted by Molina [36] modelled a dynamic 

DSTATCOM/ESS. Using the same multi-level control technique based on the instantaneous power theory on 

the synchronous rotating dq reference frame using simulations on the SimPower-Systems of MATLAB. The 

output of their validation and demonstration revealed that the system delivered a good performance of the 

multilevel controller as well as the benefits of its use in the distribution level power quality (PQ). This similar 

process was seen in the works of Balibani et al. [32], Hasan [37] used BESS is their simulation Farraj [20] 

strengthened the relevance of appropriate communication in the synchronization.  
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One major challenge identified with the use of FACTS + ESS is the need for large set of batteries in 

order to integrate the FACTS with the size of the storage systems. This is peculiar to BESS, when 

considering implementation at the large-scale transmission-level applications. There are issues of voltage 

instability associated with large battery systems, occasionally. Moreover, placing numerous cells in series. 

However, typically it is seen that even large oscillations can be mitigated with modest power injection from a 

storage system. The ability to independently control both active and reactive powers in STATCOM + BESS 

makes them ideal controllers for various types of power regulation system applications, including voltage 

fluctuation mitigation and oscillation damping. Among them, the most important use of the STATCOM + 

BESS is to stabilize any disturbances occurring in the power system [14]. Rostami and Lotfifard [35] 

concluded in their study by projecting to the future with the need to develop a systematic approach for 

decomposition of power system into local subsystems and optimally sizing and locating ESS to provide 

ancillary services for stability improvement. The implication here is that there are gaps calling for optimal 

placement of ESS.  

 

 

4. ON THE USE OF ENERGY STORAGE SYSTEM (ESS) 
The deployment of STATCOM alone is not sufficient to attain the best point of stability in the 

power system. In the study conducted by [11], the STATCOM was combined with ESS to increase the level 

of stability using a small signal systems. This study was conducted on the computer simulation using a SMIB 

model equipped with a STATCOM-ESS combination [11]. The justification for the choice of a wind farm 

based permanent magnet synchronous generator (PMSG) using an AC/DC converter was to deliver the 

connection in an economically bearable manner. The report claimed that the combination of a standard 

STATCOM with ESS was an effective strategy. The modulation and control of both reactive and active 

powers were reported to be under proper check while the system was stable in terms of transient and dynamic 

limits. Fang et al. [11] conducted a study aimed at increasing the saturation-dependent stability of a power 

system fitted with an energy storage based damping controller (ESDC). The motivation of this study was to 

proffer as solution to the size required for an ESS while performing the same function. The limitation of ESS 

in power system was linked to the expensive initial cost of fitting an ESS device. When the capacity of an 

ESS can be increased, the cost may be reduced. The authors therefore designed a model of anti-windup 

compensator (AWC). The function of the AWC was to produce a signal using the response (differences) in 

output between the ESDC and saturated ESS. This action would supplement the signal to the ESDC and 

salvage the adverse effect of saturation.  

The study adopted the reduced-order model of power system and linear matrix inequality in the 

design of the AWC. The process followed the development of a full fleche design process sing case studies 

which adapted the 4-machine 2-area power system and 10-machine New England power system [11]. In the 

work of Farraj et al. [20] a distributed control strategy was deployed due to the capacity it has for exploring 

the application of highly granular data for future power systems. The target was to improve the pliability of 

the system to perturbations. The focus was to study the effect of external ESSs to support the stability of the 

system due to fluctuations and the dynamics in the power system. This study also deployed the information-

rich multi-agent framework solely using the ESS output control and a combination of linear feedback optimal 

(LFO) control to achieve transient stability. The process is information based, hence the signal to trigger the 

distributed ESSs for synchronous generators is activated through the LFO. The result revealed that the LFO 

controller when demonstrated using the 39-bus 10-generator New England test power system have a simple 

configuration. The system was simulated under the ideal and non-ideal conditions including communication 

latency, finite sampling rate, and sensor noise [20]. 

 

 

5. DETERMINATION OF SIZING, PLACEMENT AND CONTROL OF STATCOM 

The beneficiation of the control and power stability system lies strongly and adequate determination 

of the placement and size of the STATCOM and the required ESS. There are researches done in this area 

where scalable wide area control scheme was demonstrated using distributed model predictive control 

(DMPC). The simulation proposed enhancement of the angle stability of power systems following large 

disturbances. In this regard, dynamic model of the local subsystems was the multi-area power system is 

developed for the model predictive controller and each subsystem is controlled by the associated controller. 

The controller of each subsystem exchanges minimum information with the controllers of neighboring 

subsystems to reach the final result [35].  

The study by Hassan et al. [2] developed a technique for determining the proper rating/size of 

FACTS devices, namely the STATCOM. The case of contingency was the priority of the study. They utilized 

the eigenvalue and eigenvectors method in identifying the weakest bus placed the STATCOM at that 

location. The rating of STATCOM was specified according to the required reactive power needed to improve 
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voltage stability under normal and contingency cases. Two case system studies were investigated: a simple  

5-bus system and the IEEE 14-bus system. In another independent study conducted by Hassan [2], 5 and  

14 buses were placed at different locations using the IEEE models to verify the validity of the proposed 

technique. The required STATCOM ratings, in both normal and contingency cases, were computed while the 

system operational constraints were maintained to have a secured system. The simulation produced results 

verifying the validity of the proposed technique in sizing the STATCOM [2]. In addition, Sirjani [38] studied an 

optimum location of PV-STATCOM, but not the sizing of ESS. The author used empirical data from solar 

irradiance, solar power generation data and load data for 8760 hours in a year for the study. The target was to 

deploy photovoltaic energy as a source of surge in the grid. The author concluded that the problem of optimal 

PV-STATCOM placement and sizing in both transmission and distribution systems considering the effect of 

harmonics and system dynamic support should be evaluated in the future research [38]. 

Chakraborty et al. [14] in a review on the methodology of integrating STATCOM and BESS for 

power system transient stability adopted the use of MATLAB/Simulink modeling for the placement and 

control of the integration of a STATCOM with a battery. The research also considered the dynamic response 

to generator rotor angle oscillations as a result of a 3-phase fault. They opined that the STATCOM-battery 

combination could be very eff ective in compensating generator rotor angle oscillations and thus well suited 

for improving transient stability and the dynamic behavior of the power system. Rafi [37] demonstrated the 

use of multi-operations with a single stage transformer less voltage source inverter (VSI). The study adopted 

the AC-DC microgrid while controlling the process of active power from a photovoltaic (PV) system. The 

energy source was made to rectify fluctuations due to DC loads, performs VAR compensation obtainable in 

the STATCOM configurations. Through the process, the design targeted shrink in voltage and power 

oscillation as STATCOM/ESS. It was assumed that the photovoltaic source of energy fluctuates due to 

sudden radiation changing, random load changing, and different faults effects. The power system computer 

aided design (PSCAD) was used in conducting the performance assessment on a micro grid model.  

Munoz et al. [15] used a combination of four representative control techniques to study a cascaded 

H-Bridge STATCOM. They opined the use of Static and dynamic simulations would expose more 

information on the challenges and main advantages of each scheme. While juxtaposing the hysteresis  

and predictive control alongside the carrier-based strategies, it was reported that the latter is preferred in 

terms of switching harmonics and relevant in design of filter. Whereas, the former result in unpredictable 

harmonics, which can cause unexpected resonances that could be harmful. In a study conducted by Sirjani [38], the 

proposed method employed for optimal PV-STATCOM placement and sizing was based on empirical data. 

The data adopted was the power loss index in conjunction with the adaptive particle swarm optimization 

(APSO). The result turned out that the APSO performed better in finding optimal solutions. Beyond that, the 

APSO equally converged faster compared with bee colony optimization (BCO) and the lightening search 

algorithm (LSA), two methods that were used to validate the performance of APSO. 

 

 

6. STATCOM COMPUTATION ALGORITHMS AND CONTROL TECHNIQUES 
By design, the STATCOM is meant to operate principally in order to consume the reactive power 

from the power system based on the converter controls and the expected value of voltage to be handled by  

the grid. When in operations, the STATCOM module regulates between the inductive and capacitive load to 

control the reactive power. Here, when the voltage is higher than the target, STATCOM operates in  

an inductive mode to absorb the reactive power [39]. In a study conducted by Muñoz [15] a unique technique 

was developed for the control of the current with particular consideration for a cascade H-Bridge STATCOM. 

The paper assessed four different methods which include the linear strategy using proportional integral 

controllers in the dq frame, an exact input/output linearization technique with proportional-resonant 

controllers, a multiband hysteresis modulation control, and a predictive control scheme. The simulations were 

done using the PSim 9.0 software, for a 7-level CHB-STATCOM. The capability of the DSTATCOM was 

also demonstrated using the PSim for validation in the study conducted by Singh [40]. In recent times 

algorithms such as the genetic algorithm (GA) and evolutionary programming were tested in delivering  

the optimal allocation as well as the types of devices and their sizes using the evolutionary computation 

techniques to allocate FACTS devices. The results obtained were favorable in providing solutions. The study 

conducted by Karthikeyan [41] adopted the particle swarm optimization (PSO) which is another evolutionary 

computation technique in assessing the performance of PSS with STATCOM in combination with 9 bus 

system and the power system analysis tool box (PSAT) software. The PSO algorithm was established for 

optimal location of STATCOM. The PSO was also deployed in some power engineering problems like  

the economic dispatch [42]. 
Another emerging optimization technique is the heuristic optimization techniques. This technique has 

been used in the optimal placement and sizing of SVC and STATCOM. The method is gaining better 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285     2229 

 

Application of static synchronous compensator and energy storage system… (Mohammed Salheen Alatshan) 

acceptability in proffering quality solutions to the complex and sophisticated problems of sizing and placement 
of STATCOM, which are otherwise difficult to solve by traditional methods [43]. The contemporary heuristic 
optimization technique was an improved version of the global optimization algorithms developed based on 
population estimation requirements using nature inspired analogy [9]. Another name for this type of algorithm 
is the general purpose algorithms because of their applicability to a wide range of problems [44]. On the list of 
heuristic algorithms popular are the Ant colony optimization which was used by Fughar and Nwohu [45] in 
placement of STATCOM parameters and probabilistic model in delivering a solution to the challenges of 
STATCOM placement on Nigerian grid. In [46], Ant lion optimizer which was developed following the 
hunting mechanism of ant lions in nature. Artificial bee colony (ABC) algorithm was used in the study 
conducted by [33]. Bat algorithm was used in the two-degree-of-freedom fractional order PID (2-DOF-FOPID 
for optimization of STATCOM placement [47]. Other algorithms include the Cat swarm optimization [50], 
Crow search algorithm [49], Cuckoo optimization algorithm, Cuckoo search algorithm, Differential evolution, 
Firefly algorithm, Genetic algorithm, Glowworm swarm optimization, Gravitational search algorithm, Grey 
wolf optimizer, Harmony search, Multi-verse optimizer, PSO, Shuffled complex evolution, Simulated 
annealing, Tabu search, and the Teaching-learning-based optimization [50]. As aforementioned, the placement 
and optimization of STATCOM has received attention from different kinds of algorithms. The research 
conducted by Nusair [50] made a comparative analysis with other techniques such as PSO, differential 
evolution (DE) and a host of eight other algorithms using the IEEE 14-bus and modified IEEE 30-bus power 
systems. The report revealed that other techniques were equally competitive, but the choice of a particular 
technique is a function of the desired damping capacity required [26], transfer ability, small signal steadiness 
and steady state stability boundary [51].  

 

6.1.  The evolution strategies (ES) 
This is an optimization method that emerged as a result of a research conducted in the University of 

Berlin in Germany in the 1960s. The technique attracted the attention of scholars who expanded the original 
concept by Rechenberg and Schwefel in the 1970s. The main idea was used in delivering optimum solutions in 
the field of hydrodynamics. The expansion in the capability of this strategy has gained a place for it in  
the provision of solutions to multi-dimensional, complex optimization problems [52]. In the study conducted  
by [44] the method was reported to be used for placement of STATCOM. The optimization strategy launces  
a search on all possible solution points through mutation operator. Solution candidates are selected from one 
search point to another. A parent strategy, designated by 1+1, creates one offspring from a single parent by 
applying mutation. The offspring replaces the parent for the next generation if it outshines the parent during 
the search. This principle was also implemented in locating the optimum points of operation for FACTS 
devices. The model is usually adjusted using the objective function as boundary conditions for the 
STATCOM, and UPFC in order to improve the power system operation. This was done by decreasing losses 
in the power grid. The model was applied to some power systems and was reported to be effective with some 
degree of optimum placements and low computational effort.  
 

6.2.  Genetic algorithm (GA) 
In the report compiled by Valle [42], GA was reported to be used in optimum placement of FACTS 

devices with favorable results. Three basic operators called as selection, recombination or crossover and 
mutation are employed in the process [19]. The technique it gaining acceptance lately as an evolutionary 
algorithm. The method rely on a set of computing model used in mimicking natural and genetic selection like 
was done in the case of Darwin’s Theory using evolution of genetics in biology [43]. When in operation, 
solution candidates in form of population serve as representatives of the desired result like in the case of 
chromosomes or the genome of candidate solutions. These are referred to as individuals. The computing 
process represent them as binary strings contained of 0s and 1s with fixed length. However, the encoding can 
be modified to real values called chromosomes. By default, digits are allocated to these chromosomes in form 
of bits and coding. The program commences by stochastically initialization of population as obtainable in the 
evolutionary computation principles. As aforementioned, this technique is also linked to Particle swarm 
optimization [53]. The technique is equipped with implicit parallelism which augments the ability to conduct 
iterations and make it fast in proffering solutions to complex optimization problems [54]. For appropriate 
selection, entities are chosen from the current population for later breeding (recombination or crossover). For 
optimization, potential options get selected using the individual’s fitness value. Some of the fitness test 
methods include the tournament selection and fitness proportionality selection which is also known as roulette-
wheel selection [46]. On the other hand, an arbitrary constant may be allocated as a limit for fitness of 
individuals. The implication is that any candidate option with a fitness value less that the arbitrarily allocated 
constant gets rejected. The duo is called reproduction as obtainable in biology. This was used in optimal 
placement of only one SVC targeted at reducing power loss in a power grid. It was equally deployed for 
voltage deviation and cost [55].  

Amiri et al. [19] used the GA in determining the suitable location and capacity of the STATCOMs 
for improvement in the voltage characterization of a network using wind farms as distributed generation. Also,  
the stochastic behavior of the wind speed has been considered to approach the actual condition of the wind 
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generation. The report compared three different cases using simulation. It was observed that the use of a single 
STATCOM improved the voltage profile, though it was not sufficient. Therefore, a GA based optimization 
procedure was successfully implemented to find the best placement, type, and size of selected FACTS devices 
for reducing losses in the network caused by voltage sags. The study conducted by [56] adopted the GA with 
the IEEE 14-bus system in determining the best options in locating energy storage devices for system voltage 
stability. The work separated the optimization of controller parameters in a predefined manner, therefore 
optimized parameters differently before the locations. In addition, GA was used in considering SVC, 
STATCOM, and dynamic voltage restorer (DVR) as types of FACTS. The study adopted the power system 
stability as an index for optimal allocation of the controllers. The simulation commenced by optimally placing 
different SVCs in a power system using modal analysis in combination with a GA. The implication was to 
determine the best position before controlling the fluctuations. The parameter used in the placement was  
the primary function of SVCs.  

The selection followed the most suitable input signal associated with auxiliary controller.  
The optimum input signal was used in identifying the frequency response characteristics of the system.  
GA was reported to be appropriate in economic consideration of placement of FACTS devices [46]. In a study 
by Huang et al. according to [6], a Messy-GA technique was introduced and modelled in the determination of 
optimal placement of SVC in a power system. The study utilized multi objective optimization in in order to 
maximize the worst-case reactive margin. Other parameters considered were highest load voltage at the critical 
operating point, minimum power losses and lowest device cost. This modified algorithm was equally deployed 
in identification of suitable profiles for voltage stability enhancement of power systems under critical 
operation conditions. The practice was to generate a multi-objective optimization function and convert these 
set of options to a fuzzy decision problem using a single objective function. The single objective function 
would then be disintegrated into two sub-problems. The process of demining the best placement of FACTS 
devices usually commence by conducting an all-inclusive assessment of the most critical operating condition 
of the system. By extension, all constraints and nonlinear effects were considered. The search for optimality 
would then commence from the main sub-problem with the objective of identifying an optimal SVC 
reinforcement that augments the SVC efficiency. To commence a search step of the GA, the Lagrange 
multiplier techniques are used to solve the second sub-problem. When in operation, the messy GA considers 
the placement of only one FACT device and the efficiency of the simulated grid would be assessed using 
voltage variance and loss in power generation reduced in the electricity network. This method was adopted in 
the research reported in [57, 58].   
 

6.3.  Queen bee assisted GA 
Queen Bee is a modified version of the GA where FACTS devices are placed in optimal locations in 

order to improve on their voltage profile. This algorithm deployed a technique integrating the advancement of 
a queen bee in a hive. The edge it has over the conventional GA was that it converges faster. The parameters 
are reduced and time spent in computation are cut shorter with optimum solutions provide at lower cost. 
Voltage stability index was adopted for assessing the performance benchmark at any given bus. Simulation 
results would then be used to validate the efficiency of the Queen bee assisted algorithm. This method was 
used in identification of optimum location for placing FACTS devices in a research conducted by 
Sundareswaran et al. [59]. The aim was to improve on the voltage features of the network. The result proved 
that the Queen Bee techniques was faster in comparative to traditional GA. 
 

6.4.  The non-dominated sorting genetic algorithm (NSGA) 
The study conducted by Benabid et al. [32] as reported in the findings of Dubey [44] used a NSGA-II 

in obtaining an optimum two adversary objective function comprising of the real and reactive power losses 
and absorbed by the generator and SVC. The technique considered the security and economic features of  
the system. The experiment proposed the adoption of a Fuzzy-GA logic method to support the process  
of decision making in selecting an optimum solution. This was done with the provision of alternatives from 
non- dominated solution of Pareto front. The experiment adopted the Italian power system model. In another 
study, the NSGA was adopted in continuous, discrete, and multiple placements of five Mvars of compensator 
devices using the IEEE 57-bus test system [60]. For proper implementation of the NSGA, the optimum 
challenges were scheduled in form of multi-objectives criteria. The parameters considered include the active 
power losses, compensation maneuvers like SVC and TCSC were deployed. It turned out that the set of 
outputs obtained were evenly distributed and had satisfactory range characteristics.  

GA was also applied for solving both the inter-area congestion and oscillation issues in a high voltage 
transmission system by installing FACTS devices [32]. The algorithm considered a multi-objective approach 
and two FACTS devices, namely SVC and TCSC. The multi objective optimization was studied for a wide 
range of weights on the objective functions. Simulation outcomes were reported to be promising in providing 
requisite information for the system operator to make correct decisions using the GA criteria. The development 
of an average circuit model used in the control of STATCOM with the aid of angular placement was done 
using the GA. The process used in determining the power flow for the system [3, 12] reported the findings of 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285     2231 

 

Application of static synchronous compensator and energy storage system… (Mohammed Salheen Alatshan) 

Tavakoli et al. The focus of the study was on voltage stability using an amalgamation of optimization 
processes. Parameters like reactive power, and losses of transmission lines were also part of the aim of the 
optimization performed on the system. There are indications from the study of [55] that the utilization of GA 
in sizing and placement of STATCOM using the IEEE 14-bus network delivered a good result. The process 
was to specify a power ration to be used in comparing the optimized value with the average model. The 
technique deployed a combination of sensitivity analysis with the GA for appropriate placement of the 
STATCOM within a distribution network. Using a sequential process, a sensitivity study was conducted to 
determine the best location and for FACTS devices in providing compensators. This sensitivity would then be 
deployed in identifying compound voltage-loss sensitivity index for the purpose of using it for different 
optimization requirements. After that, additional process in determining the power required to be injected by 
the STATCOM would be specified by the GA.  

 

6.5.  Simulated annealing (SA)  
The simulated annealing (SA) is one of the flexible techniques used in proffering solution the 

placement of FACTS devices. The principle relies on a combination of the relationship between statistical 
mechanics and optimization. This technique was reported to be capable of being used in large-scale systems 
irrespective of the basic requirements for conventional optimization process such as differentiability, 
continuity, and convexity. The emergence of SA was traced back to the early 1950s when the Metropolis 
developed this model for application in the crystallization process. As the name implies, annealing means 
melting the system to be optimized firstly at a high temperature. The next step was to reduce the temperature 
of the system and allow it to cool down slowly by lowering the temperature while the system freezes and no 
further change occurs. For every annealing cycle to be completed, the process must be allowed to continue for 
long enough until the system reach a steady state.  

A method based on the SA and Lagrange multiplier techniques for optimal placement of SVCs was 
presented in [35]. A four-step procedure was proposed for synthesizing the optimal reactive reinforcement for 
a selected design configuration. The procedure maximized the reactive margin of a design configuration as the 
criterion. The optimal SVC placement was realized by solving two sub problems. The SA performed a search 
for the optimal SVC reinforcement which maximized the reactive margin of the power system. Gitizadeh and 
Kalantar proposed an approach based on SA and sequential quadratic programming (SQP) in the optimization 
process for optimally locating TCSC and SVC [36]. The problem was formulated according to the SQP 
problem in the first stage to accurately evaluate the static security margin with the congestion alleviation 
constraint in the presence of FACTS devices, and in the next stage a SA based optimization technique was 
used to find an optimal solution. The simulation results showed that this placement approach reduced 
congestion in the transmission lines and enhanced distance of the voltage collapse point without the use of 
procedures with a high computational burden such as the CPF method.  

 

6.6.  Particle swarm optimization (PSO) 
The PSO is a kind of evolutionary computation algorithm used in proffering solutions to global 

optimization problems. The emergence of the PSO algorithm was traced back to 1995 when it was deployed 
for delivering solutions to optimization challenges by Eberhart and Kennedy. The technique has gained 
acceptability as a solution tool used by various researchers. The method searches for optimum result and had 
been deployed for various applications which include hybridization and specialization. This method has shown 
good performance in a variety of application domains. It is a simple and robust strategy based on the social and 
cooperative behavior shown by various species like flocks of bird, schools of fish, and so on.  
 

6.7.  Harmony search (HS) algorithm 
The foundation of this algorithm was on the basis of the principles adopted by the musicians. While 

the musician attempts to discover a suitable and optimal instrumental pitch, the experience of the players and 
the instrument in use are combined to deliver the optimum harmony. This concept was borrowed to  
the computing field. The implication is that to deliver an optimum solution, the computational professionalism 
of the user is required in obtaining optimal design variables with certain discrete values based on 
computational intelligence and random processes. Music players improve their experience based on aesthetic 
standards while design variables in computer memory can be improved based on an objective function. This 
algorithm has an edge over other techniques in that it can consider both discontinuous and continuous 
functions because it does not require differential gradients, it does not require initial value setting for the 
variables, it is free from divergence, and it may escape local optima. 

 

6.8.  Hybrid artificial intelligence techniques 
An amalgamation of two or even more artificial intelligence system is required to deliver a hybrid 

intelligent system. Two major steps involved in developing the hybrid technique are the fuzzy logic. The aim 
of this step was to reduce the search space. The second stage is the use of micro-GA. This could only recognize 
predetermined buses. This technique was applied in proffering solution to engineering issues during the last 
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decade. The application of this technique was deployed in the optimization of various process parameters involving 
four different FACTS devices such as the TCSC, TCPAR, UPFC, and SVC in a power system. 

 
 

7. FUTURE TECHNOLOGY 

More reactive power compensation (RPC) installations are probably required in the near future to 

overcome system limitations which is seen an important contribution to increase system stability and prevent 

blackouts [4]. For a given range of supply voltage variation, the total voltage regulation and the total reactive 

capacity required for each option to produce the desired voltage regulation at the point of connection are 

expected to be better. The future holds that advancement may require less overall reactive power capacity than 

STATCOM and yields better total voltage regulation. This makes electric springs (ESs) a promising 

technology for future smart grids where selective voltage regulation for sensitive loads would be necessary 

alongside demand side response [7]. Further it is stated that the energy storage technology will be the key to 

the future development of renewable energy. In [5] some of the commercial successes in electric power 

storage technologies have been discussed and it also discusses some of the emerging applications in power 

storage like wind farm power stabilization. The report [6] provides a catalogue of the various current 

technologies (steam, hydro, wind, etc., and storage being one of them). Their future outlooks, evaluations of 

security of supply and environmental impacts, climate change evaluations, and technical and economic 

analysis, in the context of energy planning activities. 

 

 

8. CONCLUSION 

Currently, the accessible technology has limitations in identifying the optimal sixing and placement 

of the STATCOM and ESS. A handful of studies adopted a basic algorithm and make modifications to suite 

the demand of the power system understudied. The deployment of various methods of reducing the effect of 

dynamics on the power system revealed that the battery still remains one of the popular methods of attaining 

stability in the system. The proposed wind, solar, renewable sources of energy are still at the infancy stage. 

The development of all algorithms was based on profounder theories that were later adapted to the field of 

power, engineering, and the placement of FACTS devices. Obviously, the process of placement, sizing and 

locations of STATCOMs will continue to be a challenge because power systems will keep evolving with 

time. It is clear from the review that the maximum beneficiation of the use of STATCOM in combination 

with ESS remains unexhausted. The power dynamics remains a challenge to be solved only by the use of 

STATCOM in combination with ESS. It is obvious that STATCOM applications are often simulated on the 

systems of MATLAB. There is equally the fear of implementation of the STATCOM with ESS using 

batteries. These challenges will be surmounted with the miniaturization of battery cells and development of 

high capacity batteries. In fact, when these technologies are fully blown, the challenges of power fluctuations 

and the dynamism will be well controlled. 

 

 

REFERENCES  
[1] O. K. Shinde and V. R. S. V. B. Pulavarthi, “STATCOM converters and control: A review,”2017 International 

Conference on Data Management, Analytics and Innovation (ICDMAI), Pune, pp. 145-151, 2017. 

[2] H. A. Hassan, Z. H. Osman, and A. E. Lasheen, “Sizing of STATCOM to Enhance Voltage Stability of Power 

Systems for Normal and Contingency Cases,” Scientific Research Open Access, vol. 5, no. 1, pp. 8-18, 2014. 

[3] E. Ghahremani and I. Kamwa, “Optimal Allocation of STATCOM with Energy Storage to Improve Power System 

Performance,” 2014 IEEE PES T&D Conference and Exposition, Chicago, IL, pp. 1-5, 2014. 

[4] H. K. Tyll and F. Schettler, “Historical overview on dynamic reactive power compensation solutions from the begin 

of AC power transmission towards present applications,” 2009 IEEE/PES Power Systems Conference and 

Exposition, Seattle, WA, pp. 1-7, 2009. 

[5] H. Musa, “An Overview on Voltage Stability Indices as Indicators of Voltage Stability for Networks with 

Distributed Generations Penetration,” International Journal of Science, Technology and Society, vol. 3, no. 4,  

pp. 214–219, 2015. 

[6] Y. Ma, A. Huang, and X. Zhou, “A review of STATCOM on the electric power system,” 2015 IEEE International 

Conference on Mechatronics and Automation (ICMA), Beijing, pp. 162-167, 2015. 

[7] S. Shankari, “Comparison of Electric Springs with Statcom for Flc Based Distributed Voltage Control,” 

International Journal of Profesional Engineering Studies, vol. VI, no. 3, pp. 355–362, 2016. 

[8] K. Gao, L. Yuan, Z. Zhang, and L. Li, “The Study of STATCOM-BESS Damping Power System Oscillations based 

on DTA Method,” DEStech Transactions on Computer Science and Engineering,  no. iccae, pp. 418–422, 2017. 

[9] R. Sirjani, A. Mohamed, and H. Shareef, "Optimal placement and sizing of shunt FACTS devices in power systems 

using heuristic optimization techniques: A comprehensive survey," Przegląd Elektrotechniczny, vol. 88, no. 10b, 

pp. 335-341, 2012.  



Bulletin of Electr Eng & Inf  ISSN: 2302-9285     2233 

 

Application of static synchronous compensator and energy storage system… (Mohammed Salheen Alatshan) 

[10] U. Datta, A. Kalam, and J. Shi, “Battery energy storage system for transient frequency stability enhancement of a 

large-scale power system,” 2017 Australasian Universities Power Engineering Conference (AUPEC), Melbourne, 

VIC, pp. 1-5, 2017. 

[11] J. Fang, W. Yao, Z. Chen, J. Wen, and S. Cheng, “Design of anti-windup compensator for energy storage-based 

damping controller to enhance power system stability,” in IEEE Transactions on Power Systems, vol. 29, no. 3,  

pp. 1175-1185, May 2014. 

[12] B. Singh, R. Saha, A. Chandra, and K. Al-Haddad, “Static synchronous compensators (STATCOM): A review,” 

IET Digital Library, vol. 2, no. 4, pp. 297–324, July 2009. 

[13] T. Masood, R. K. Aggarwal, S. A. Qureshi, and R. A. J. Khan, “STATCOM Model against SVC Control Model 

Perfomance Analyses Technique by MATLAB,” International Conference on Renewable Energies and Power 

Quality (ICREPQ'10), 2010. 

[14] A. Chakraborty, S. K. Musunuri, A. K. Srivastava, and A. K. Kondabathini, “Integrating STATCOM and Battery 

Energy Storage System for Power System Transient Stability : A Review and Application,” Advances in Power 

Electronics, vol. 2012, no. 676010, 2012. 

[15] Chapter 5, “Active Power Compensation Of Statcom With Energy Storage System” pp. 167-206, 2003. 

[16] J. Muñoz, J. Rohten, J. Espinoza, P. Melín, C. Baier, and M. Rivera, “Review of current control techniques for a 

cascaded H-Bridge STATCOM,” 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, 

pp. 3085-3090, 2015. 

[17] Lirong Zhang, Yi Wang, Heming Li and Pin Sun, “Hybrid power control of cascaded STATCOM/BESS for wind 

farm integration,” IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, Vienna,  

pp. 5288-5293, 2013. 

[18] Chang Qian and M. L. Crow, “A cascaded converter-based StatCom with energy storage,” 2002 IEEE Power 

Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309), New York, NY, USA,  

pp. 544-549 vol.1, 2002. 

[19] E. M. Amiri, B. Zaker, H. Rahbarimagham, and M. Abedi, “Optimal Placement and Sizing of STATCOM to 

Improve Power Quality Considering Wind Generation,” The Third Iranian Conference on Renewable Energies and 

Distributed Generation, 2013. 

[20] A. Farraj, E. Hammad, and D. Kundur, “On the use of energy storage systems and linear feedback optimal control 

for transient stability,” in IEEE Transactions on Industrial Informatics, vol. 13, no. 4, pp. 1575-1585, Aug 2017.  

[21] M. Salman, “STATCOM Controller ( Design and Assessment ) for Transmission and Distribution System 

Problems,” International Knowledge Sharing Platform, vol. 7, no. 8, pp. 30-45, 2016. 

[22] K. Joshi and V. Chandrakar, “Transient Stability Improvement using UPFC-SMES in a Multi Machine Power 

System,” International Journal of Applied Power Engineering IJAPE, vol. 5, no. 1, pp. 14–21, April, 2016. 

[23] D. Shen and P. Lehn, "Modeling, analysis, and control of a current source inverter-based STATCOM," IEEE 

Transactions on power delivery, vol. 17, no. 1, pp. 248-253, 2002.  

[24] H. H. Goh, Q. S. Chua, S. W. Lee, B. C. Kok, K. C. Goh, and K. T. K. Teo, “Line Voltage Stability Indices Based 

on Precautionary Measure Approximation in Smart Grid,” Proceedings of the 11th International Conference on 

Innovation & Management, pp. 1507–1518, 2014. 

[25] Y. Suresh and A. Panda, "Statcom Operation Strategy Under Single Line to Ground Faults in Power System," 2010.  

[26] W. Du, Z. Chen, H. F. Wang, and R. Dunn, “Energy storage systems applied in power system stability control,” 

2007 42nd International Universities Power Engineering Conference, Brighton, pp. 455-458, 2007. 

[27] R. Verayiah, A. Mohamed, and H. Shareef, “Modified Novel Line Stability Factor Index with Reactive Power 

Tracing for Identification of Vulnerable Buses in Power System Modified Novel Line Stability Factor Index with 

Reactive Power Tracing for Identification of Vulnerable Buses in Power System,” Applied Mechanics and 

Materials, vol. 785, pp. 398-402, 2015. 

[28] S. Sao, “Voltage Stability Indicator At The Proximity Of The Voltage Collapse Point And Its Implication On 

Margin,” Citeseer, vol. 5, pp. 151–154, 2011. 

[29] M. Stuchl, S. Misak, and L. Prokop, “A simulation of energy storage system for improving the power system 

stability with grid-connected pv using MCA analysis and labview tool,” Power Engineering and Electrical 

Engineering, vol. 13, no. 2, pp. 127–136, 2015. 

[30] D. Hemasundar, M. Thakre, and V. Kale, "Impact of STATCOM on distance relay-Modeling and simulation using 

PSCAD/EMTDC," in 2014 IEEE Students' Conference on Electrical, Electronics and Computer Science,  

pp. 1-6, 2014. 

[31] H. Ahsan and M. U. D. Mufti, “Modeling and simulation of a superconducting magnetic energy storage based 

multi-machine power system for transient stability study,” 2017 6th International Conference on Computer 

Applications In Electrical Engineering-Recent Advances (CERA), Roorkee, pp. 347-352, 2017. 

[32] S. K. Balibani, G. Gurrala, and I. Sen, “Power system stability enhancement using a STATCOM with ESS,” 2013 

Annual IEEE India Conference (INDICON), Mumbai, pp. 1-6, 2013. 

[33] A. S. Telang and P. P. Bedekar, “Systematic approach for optimal placement and sizing of STATCOM to assess the 

voltage stability,” 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), 

Nagercoil, pp. 1-6, 2016. 

[34] Y. Cheng, C. Qian, M. L. Crow, S. Pekarek, and S. Atcitty, “A comparison of diode-clamped and cascaded 

multilevel converters for a STATCOM with energy storage,” in IEEE Transactions on Industrial Electronics, vol. 

53, no. 5, pp. 1512-1521, Oct 2006.  

[35] M. Rostami and S. Lotfifard, “Scalable Coordinated Control of Energy Storage Systems for Enhancing Power 

System Angle Stability,” in IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 763-770, April 2018.  



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 9, No. 6, December 2020:  2222 – 2234 

2234 

[36] M. G. Molina and P. E. Mercado, “Control design and simulation of dstatcom with energy storage for power 

quality improvements,” 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, 

Caracas, pp. 1-7, 2006. 

[37] F. H. M. Rafi, M. J. Hossain, and J. Lu, “Design of a single stage transformerless VSI in a smart microgrid for PV-

STATCOM/ESS operations,” 2014 Australasian Universities Power Engineering Conference (AUPEC), Perth, 

WA, pp. 1-6, 2014. 

[38] R. Sirjani, “Optimal Placement and Sizing of PV-STATCOM in Power Systems Using Empirical Data and 

Adaptive Particle Swarm Optimization,” Sustainability, vol. 10, no. 3, p. 727, 2018. 

[49] A. M. Eltamaly, Y. Sayed, A. M. El-sayed, A. Nasr, and A. Elghaffar, “Adaptive static synchronous compensation 

techniques with the transmission system for optimum voltage control,” Ain Shams Engineering Journal, vol. 11, no. 

1, pp. 35-44, March 2020. 

[40] R. Singh and D. K. Singh, “Simulation of D-STATCOM for Voltage Fluctuation,”2012 Second International 

Conference on Advanced Computing & Communication Technologies, Rohtak, Haryana, pp. 225-230, 2012. 

[41] K. Karthikeyan and P. K. Dhal, “ScienceDirect Optimal Location of STATCOM based Dynamic Stability Analysis 

tuning of PSS using Particle Swarm Optimization,” Materialstoday Proceedings, vol. 5, no. 1, pp. 588–595, 2018. 

[42] Y. Valle, S. Member, J. C. Hernandez, S. Member, and G. K. Venayagamoorthy, “Optimal STATCOM Sizing and 

Placement Using Particle Swarm Optimization,” Electrical and Computer Engineering Faculty  

Reseach & Creative Works, 2006. 

[43] O. Techniques, “Optimal Placement and Sizing of STATCOMs in Power Systems using Heuristic Optimal 

Placement and Sizing of STATCOM in Power Systems Using Heuristic Optimization Techniques,” pp. 437-476, 2014.  

[44] R. Dubey, “Optimal Placement of Shunt FACTS Devices Using Heuristic Optimization Techniques : An 

Overview,” 2014 Fourth International Conference on Communication Systems and Network Technologies, Bhopal, 

pp. 518-523, 2014. 

[45] A. Fughar, “Optimal Location of STATCOM in Nigerian 330kv Networkusing Ant Colony Optimization Meta-

Heuristic,” Global Journal of Research In Engineering, vol. 14, no. 3, 2014. 

[46] R. M. J and S. E. A. Stephen, “A Critical Study On Ten Non- Traditional Optimization Methods In Solving 

Engineering Problems,” International Journal of Mechanical Engineering and Technology,  

vol. 9, no. 11, pp. 233–249, 2018. 

[47] S. R. Paital, P. K. Ray, and A. Mohanty, “Swarm and BAT Algorithm Optimized 2DOF-FOPID Based STATCOM 

Controller for Transient Stability Enhancement,” 2017 Progress in Electromagnetics Research Symposium - Fall 

(PIERS - FALL), Singapore, pp. 1961-1968, 2017. 

[48] G. Naveen Kumar, M. Surya Kalavathi, R. Harini Krishna “O Ptimal P Lacement Of Svc And Statcom For V 

Oltage S Tability E Nhancement Under,” International Journal of Advances in Engineering & Technology, vol. 5, 

no. 1, pp. 436-447, 2012. 

[49] G. Choudhary and N. Singhal, “Optimal placement of STATCOM for improving voltage profile and reducing 

losses using crow search algorithm,” 2016 International Conference on Control, Computing, Communication and 

Materials (ICCCCM), Allahbad, pp. 1-6, 2016. 

[50] K. N. Nusair and M. I. Alomoush, “Optimal reactive power dispatch using teaching learning based optimization 

algorithm with consideration of FACTS device STATCOM” 2017 10th Jordanian International Electrical and 

Electronics Engineering Conference (JIEEEC), Amman, pp. 1-12, 2017. 

[51] S. Tang, H. Yang, R. Zhao, and X. Geng, “Influence of battery energy storage system on steady state stability of 

power system,” 2009 International Conference on Electrical Machines and Systems, Tokyo, pp. 1-4, 2009. 

[52] W. Zhang, F. Li, and L. M. Tolbert, "Optimal allocation of shunt dynamic Var source SVC and STATCOM: A 

Survey," 2006. 

[53] Sujita G. V. N, B. Narasimha Reddy “Improving the loadability of the wind integrated power system using 

STATCOM placed at an optimal location,”International Journal of Innovative Research in Electrical, Electronics, 

Instrumentation and Control Engineering, , vol. 3, no. 1, pp. 114-118, 2015. 

[54] K. M. Lin, W. Swe, and P. L. Swe, “Coordinated Design of PSS and STATCOM for Power System Stability 

Improvement Using Bacteria Foraging Algorithm,” International Journal of Electrical, Computer, Electronics and 

Communication Engineering vo. 7, no. 2, pp. 839-846, 2013. 

[55] S. Dixit and L. Srivastava, “Optimal Location and Sizing of STATCOM for Minimizing Power Loss and 

Improving Voltage Profile using GA,” vol. 4, no. 1, pp. 1–11, 2014. 

[56] N. Altin, “Energy storage systems and power system stability,” 2016 International Smart Grid Workshop and 

Certificate Program (ISGWCP), Istanbul, pp. 1-7, 2016. 

[57] A. S. Telang and P. P. Bedekar, “Application of Voltage Stability Indices for Proper Placement of STATCOM 

under Load Increase Scenario,” International Journal of Energy and Power Engineering, vol. 10, no. 7,  

pp. 998-1003, 2016. 

[58] M. R. Shaik and A. S. Reddy, “algorithm to improve Voltage Stability in Power Systems,” 2016 Int. Conf. Signal 

Process. Commun. Power Embed. Syst., pp. 648–652, 2016. 

[59] P. Rao, M. L. Crow and Z. Yang, “STATCOM control for power system voltage control applications, ” in IEEE 

Transactions on Power Delivery, ” vol. 15, no. 4, pp. 1311-1317, Oct 2000. 

[60] R. Agrawal, S. Univesity, P. Kothari, and F. Logic, “Simulation Tool For Facts Controllers- "A REVIEW ",” 

International Journal of Development Research, vol. 6, no. 4, pp. 7409-7416, 2016. 

 


