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 This paper presents the impact of introducing a two-controller on the 

linearized autonomous underwater vehicle (AUV) for vertical motion 

control. These controllers are presented to overcome the sensor noise of the 

AUV control model that effect on the tolerance and stability of the depth 

motion control. Linear quadratic Gaussian (LQG) controller is cascaded with 

AUV model to adapt the tolerance and the stability of the system and 

compared with FOPID established by the improved whale optimization 

algorithm (IWOA) to identify which controlling method can make the system 

more harmonize and tolerable. The developed algorithm is based on 

improving the original WOA by reshaping a specific detail on WOA to earn 

a warranty that the new IWOA will have values for the update position lower 

than the identified lower-bound (LB), and upper-bound (UB). Furthermore, 

the algorithm is examined by a set of test functions that include (unimodal, 

multimodal and fixed dimension multimodal functions). The privileges of 

applying IWOA are reducing the executing time and obtaining the semi-

optimal objective function as compared with the original WOA algorithm 

and other popular swarm-intelligence optimization algorithms. 

Keywords: 

AUV  

FOPID 

Improved WOA 

LQG  

PID 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Mustafa Wassef Hasan 

Department of Electrical Engineering 

University of Baghdad 

Al-Jadriya, Baghdad, Iraq 

Email: m.hasan0902@coeng.uobaghdad.edu.iq 

 

 

1. INTRODUCTION 

Autonomous underwater vehicle (AUV) considered one of the several studies that have discussed 

during the last decades due to its purposes and applications in different fields such as militaries, exploring the 

ocean submarines, oil and gas fields. In the literature, numerous controllers are presented for control the 

AUV the authors suggested different techniques to solve or handle the AUV problems like [1-5]. During the 

movement of AUV towards the vertical location, the sensors used in the AUV control model can add a 

considerable amount of noise which leads to change the tolerance and stability of the system as a result of 

that movement of AUV become unsettled. To solve this problem LQG controller used in compared with 

FOPID based on basic WO and IWO algorithms, which considered one of many swarm-intelligence 

algorithms that used to enhance selected system controllers by getting the best tuning parameters for the 

running algorithm like [6] that achieved the global time optimization by introducing quantum behaviour and 

adaptive law into a particle optimization algorithm (PSO), the authors in [7] explain a nature-inspired 

algorithm called alarm pheromone ant colony system (AP-ACS) in order to handle the constraint issue for the 

path planning effectively.  

Therefore, to present the capability of the proposed IWO algorithm that developed based on the 

definition of the basic WO algorithm, several test functions are utilized to obtain the average and standard 

https://creativecommons.org/licenses/by-sa/4.0/
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deviation and finally to be compared with other optimization algorithms [8-10]. The remainder of this is 

organized as follows. Section 2 establishes the autonomous underwater vehicle model. The theoretical basics 

for the controlling methods and the standard whale optimization algorithm are presented in section 3. The 

improvement of the standard WOA is explored fully in section 4. Section 5 describes the numerical results of 

the improved WOA capability in comparison with the basic one and the results of the system with designed 

controllers tuned by different optimization algorithms. Finally, section 6 summarizes the conclusions of this 

research work. 

 

 

2. AUTONOMOUS UNDERWATER VEHICLE MODEL 

Model design of the AUV [11, 12] presented as body-fixed reference (BRF) and inertial reference 

frame (IRF) as shown in Figure 1. AUV dynamics described by vector velocity 𝑣 = [𝑢, v, w, 𝑝, q, r ]
𝑇
 which 

represent linear velocities and angular velocities of (Surge, Sway, Heave, Roll, Pitch, Yaw) respectively, 

while IRF can express as the vector 𝜂 = [𝜂1, 𝜂2]
𝑇
 where 𝜂1 = [𝑥, y, z]

𝑇
 and 𝜂2 = [𝜑, θ, ψ]

𝑇
 both 𝜂1 and 𝜂2 

represents the position and rotational coordinate of AUV. 
 

 

 
 

Figure 1. AUV reference frames 
 

 

The author in [13] described vehicle dynamics as (1): 

 

𝑚[𝑢̇ − 𝑣𝑟 + 𝑤𝑞 − 𝑥𝑔(𝑞2 + 𝑟2) + 𝑦𝑔(𝑝𝑞 − 𝑟̇) + 𝑧𝑔(𝑝𝑟 + 𝑞̇)] = ∑ 𝑋𝑒𝑥𝑡 

𝑚[𝑣̇ − 𝑤𝑝 + 𝑢𝑟 − 𝑦𝑔(𝑟2 + 𝑝2) + 𝑧𝑔(𝑞𝑟 − 𝑝̇) + 𝑥𝑔(𝑞𝑝 + 𝑟̇)] = ∑𝑌𝑒𝑥𝑡 

𝑚[𝑤̇ − 𝑢𝑞 + 𝑣𝑝 − 𝑧𝑔(𝑝2 + 𝑞2) + 𝑥𝑔(𝑟𝑝 − 𝑞̇) + 𝑦𝑔(𝑟𝑞 + 𝑝̇)] = ∑𝑍𝑒𝑥𝑡 

𝐼𝑥𝑥𝑝̇ + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑞𝑟 + 𝑚[𝑦𝑔(𝑤̇ − 𝑢𝑞 + 𝑣𝑝) − 𝑧𝑔(𝑣̇ − 𝑤𝑝 + 𝑢𝑟)] = ∑𝐾𝑒𝑥𝑡  

𝐼𝑦𝑦𝑞̇ + (𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑟𝑝 + 𝑚[𝑧𝑔(𝑢̇ − 𝑣𝑟 + 𝑤𝑞) − 𝑥𝑔(𝑤̇ − 𝑢𝑞 + 𝑣𝑝)] = ∑𝑀𝑒𝑥𝑡  

𝐼𝑧𝑧𝑟̇ + (𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑝𝑞 + 𝑚[𝑥𝑔(𝑣̇ − 𝑤𝑝 + 𝑢𝑟) − 𝑦𝑔(𝑢̇ − 𝑣𝑟 + 𝑤𝑞)] = ∑𝑁𝑒𝑥𝑡  

(1) 

 

where the parameters of the vehicle dynamics of equations above are, (x) is the forward position, (y) is the 

backwards position, (z) is the depth position, (ɸ) is the roll angle, (θ) is the pitch angle, (ψ) is yaw angle, (m) 

is the mass of the vehicle, (𝑋𝑒𝑥𝑡, 𝑌𝑒𝑥𝑡 , 𝑍𝑒𝑥𝑡, 𝐾𝑒𝑥𝑡, 𝑀𝑒𝑥𝑡, 𝑁𝑒𝑥𝑡) are the Total forces and moments acting on the 

vehicle to the body-fixed reference frame, (𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧) are the inertia tensor, (𝑥𝑔, 𝑦
𝑔
, 𝑧𝑔) are the vehicle 

gravity coordinates, and (𝑥𝑏, 𝑦
𝑏
, 𝑧𝑏) are the buoyancy coordinates of the AUV. 

Vehicle mechanics can be linearized and developing the state-space matrices as described below, 

 

[
 
 
 

𝑚 − 𝑋𝑢̇ −(𝑚𝑋𝑔 + 𝑍𝑞̇) 0 0

−(𝑚𝑋𝑔 − 𝑀𝑤̇) 𝐼𝑦𝑦 − 𝑀𝑞̇ 0 0

0 0 1 0
0 0 0 1]

 
 
 

[

𝑤̇
𝑞̇
𝑧̇
𝜃̇

] − [

𝑍𝑤 𝑚𝑈 + 𝑍𝑞 0 0

𝑀𝑤 −𝑚𝑋𝑔𝑈 + 𝑀𝑞 0 𝑀𝜃

1 0 0 −𝑈
0 1 0 0

] [

𝑤
𝑞
𝑧
𝜃

] = [

𝑍𝛿𝑠

𝑀𝛿𝑠

0
0

] [𝛿𝑠] (2) 
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where 𝑢 = [𝛿𝑠]
𝑇, which (𝛿𝑠) the AUV plane angle, (2) can be written as,  

 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (3) 

 

After developing the values of the parameters in [13] in (3), the following parameters are produced: 

 

𝐴 = (

−2.38 1.26 0 0.04
4.23 −1.12 0 −0.7
1 0 0 −1.54
0 1 0 0

), 𝐵 = (

−1.38
−3.84

0
0

)  &  𝐶 = (0     0    1     0) 

 

 

3. THEORETICAL BASICS 

3.1. LQG controller 

Linear quadratic Gaussian (LQG) controller is a mixed between Kalman filter and linear quadratic 

regulator (LQR) controller [14], that used for finding the optimal parameters'' values that minimizing the 

quadratic cost criterion. Kalman filter is known as an estimator for a linear-quadratic problem which 

responsible for estimating the system states when additive white noise added to the linearized system's 

model. Where the system state equation defined as; 

 

𝑋̇(𝑡) = 𝐴 𝑋(𝑡) + 𝐵𝑢(𝑡) + Г𝑤(𝑡) (4) 

 

𝑦(𝑡) = 𝐶 𝑋(𝑡) + 𝑣(𝑡) (5) 

 

where 𝑋(𝑡) is the state vector, 𝑣(𝑡) and 𝑤(𝑡) are the additive white noise signals, Г is the disturbance matrix, 

𝑢(𝑡) is the control input which used to minimize the performance index shown in (6) and 𝑦(𝑡) is the system 

output. 

 

𝐽 = 𝐸 { lim
𝑇→∞

1

𝑇
∫ [𝑥𝑇𝑄 𝑥 + 𝑢𝑇𝑅 𝑢] 𝑑𝑡

𝑇

0
} (6) 

 

where Q and R are weighting matrices such that Q = 𝑄𝑇 ≥ 0 and 𝑅 = 𝑅𝑇 > 0, E is the expected value. The 

linear state-space described as: 

 

𝑋̇(𝑡) = 𝐴 𝑋(𝑡) + 𝐵𝑢(𝑡) (7) 

 

𝑢(𝑡) = −𝐾𝑟  𝑋(𝑡) (8) 

 

where Kr is obtained from the performance index represented in (6); 

 

 𝐾𝑟=𝑅−1𝐵𝑇 (9) 

 

where P can be found from solving the matrix Riccati equation (MRE). Kalman filter matrix also can be 

found from (10), 

 

𝐾𝑓 = 𝑃𝑛𝐶−1𝑣−1 (10) 

 

where 𝑃𝑛 can be found from solving the following matrix Riccati equation 

 

𝐴𝑃𝑛 + 𝑃𝑛𝐴𝑇 + Г𝑊𝑇Г − 𝑃𝑛𝐶𝑇𝑣−1𝐶𝑃𝑛 = 0 (11) 

 

3.2. Luenberger observer 

Luenberger observer is used in different models such as discrete-time observer, continuous-time 

model, nonlinear observer, and others. Luenberger observer used to estimate states in real systems by 

measure input and output of these systems, and in some cases, it is necessary to find the system states when it 

involved with other sources such as adding additive white noise to the system and because of that, the system 

will not solve this issue correctly when noise added for that reason, the observer is designed to define the real 

states of such systems [15].  
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A model is constructed, but first, the system should be tested to ensure it is fully observable using 

the following formula, 𝑄𝑜 = [𝐶  𝐶𝐴  𝐶𝐴2  … .𝐶𝐴𝑛−1], so that it should have full rank similar to state matrix 

(A) to estimate all state variables as shown in the following equations:  

 

𝐾𝑓 = 𝑃𝑛𝐶−1𝑣−1 (12) 

 

𝑋̇̂ = 𝐴 𝑥̂ + 𝐵 𝑢 (13) 

 

where 𝑋̇̂ is the estimation of real states, (13) can be written as shown below, 

 

𝑋̇̂ = 𝐴 𝑥̂ + 𝐵 𝑢 + 𝐿 (𝑦 − 𝑦̂) (14) 

 

After adding the difference between the measured and the estimation output multiplied by (L), i.e., 𝐿(𝑦 − 𝑦̂)  
which be considered as convergence term to the system. The error of the system can be described in the 

following,  

 

𝑋̇ − 𝑋̇̂ = 𝐴(𝑥 − 𝑥̂) − 𝐿(𝐶 𝑥 − 𝐶 𝑥̂) (15) 

 

The value of 𝐿 must be found in order to stabilize the system, it is normally assumed arbitrary but 

preferred as 5 times of closed-loop poles of the system. 

 

3.3. FOPID controller 

Fractional order proportional, integral and derivative controller consists of five parameters that 

different from typical PID controller, which normally consists of three parameters to enlarge the search space 

and therefore, achieve powerful performance [16, 17]. The frequency-domain representation of FOPID 

controller is given by: 

 

𝐶(𝑠) = 𝐾𝑝 +
𝐾𝐼

𝑆𝜆 + 𝐾𝐷𝑆𝜇 (16) 

 

where 𝐾𝑝 is the proportional gain, 𝐾𝐷 is a derivative gain, and 𝐾𝐼 is integral gain, and (λ, μ) is the fractional 

order of FOPID. In the case of λ=1 & μ=1, FOPID will act as a normal PID controller so that when λ=0 & 

μ=1 will give a PD controller, and when λ=1 & μ=0 will give a PI controller. 

 

3.4. Standard whale optimization algorithm 

 The standard WOA is a nature-inspired optimization algorithm invented by Mirjalili and Lewis [18], 

which based on bubble-net hunting of whales. This method used to mimic physical or biological phenomena, 

WOA is one of many other swarm-intelligence algorithms that invented in the last years, some of several 

famous algorithms are ray optimization algorithm [19], ant colony algorithm (ACO) [20], black hole 

algorithm [21]. The dominant point of this optimization method is that it merges the best individuals to create 

the next individuals. And since the whales are hunting in shrinking circle and on the spiral path, as explained 

in (17) below, 

 

𝑋⃗(𝑡 + 1) = {
𝑋⃗∗(𝑡) − 𝐴 . 𝐷⃗⃗⃗                                                 𝑖𝑓 𝑝 < 0.5                           (a)

𝐷′⃗⃗⃗⃗⃗ . 𝑒𝑏𝑙. cos(2𝜋𝑙) + 𝑋⃗∗(𝑡)                         𝑖𝑓 𝑝 ≥ 0.5                           (b)
 (17) 

 

where (17a) represent the shrinking circle and (17b) defined the spiral path, b is a constant number for 

defining the shape of a logarithmic spiral, l is a random number in the range (-1,1), p is a random number 

between [0,1], 𝑋∗⃗⃗ ⃗⃗ ⃗ is the best solution for the position vector, and 𝐴 ⃗⃗⃗⃗  is a coefficient vector and calculated as 

shown in the following formula, 

 

𝐴 = 2 𝑎⃗ . 𝑟 − 𝑎⃗ (18) 

 

where 𝑎⃗ is a range number that decreased in the interval (2,0), 𝑟 ⃗⃗⃗ is a random vector of range (1,0), and 𝐷⃗⃗⃗ can 

be defined as the global search and represented as shown in (19) 

 

𝐷⃗⃗⃗ = |𝐶 . 𝑋⃗𝑟𝑎𝑛𝑑 − 𝑋⃗| (19) 
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𝐶 is coefficient vector and can be defined from (20); 
 

𝐶 = 2 . 𝑟  (20) 
 

𝐷′⃗⃗⃗⃗⃗ is the interval distance between the whale and the prey which can be defined by (21), 
 

𝐷′⃗⃗⃗⃗⃗ = |𝑋⃗∗(𝑡) − 𝑋⃗(𝑡)| (21) 

 

The humpback whale can locate their prey and encircle them this behavior represented as the following; 
 

𝐷⃗⃗⃗ = |𝐶 . 𝑋⃗⃗
∗
(𝑡) − 𝑋⃗⃗(𝑡)| (22) 

 

 

4. IMPROVED WHALE OPTIMIZATION ALGORITHM 

The main problems in the standard WOA are its trail to escape from the large number of local 

solutions in nonlinear search spaces and the balancing issue between the exploration and exploitation. The 

procedure of the update is that when the algorithm updates the position in each iteration, the values of these 

updated values can reach a higher value. Values can reach beyond the upper bound and lower bound of the 

required functions. Mirjalili and Lewis [18], in (19) it proposed a random matrix-vector (random whale) to be 

chosen from each vector at every loop, as shown in the following statement, 
 

𝑋𝑟𝑎𝑛𝑑 = 𝐴𝑟𝑟𝑎𝑦(𝐼𝑛𝑡𝑒𝑔𝑒𝑟[𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑢𝑚𝑏𝑒𝑟]) (23) 
 

where, the 𝑋𝑟𝑎𝑛𝑑 represent a random hunter (whale) vector that has only one value to be selected at each 𝐴 ≥
1 and this value might be not optimal value that make search domain converge to the prey for the shrinking 

circle in exploration phase and neglect the remaining values of 𝑋𝑟𝑎𝑛𝑑 to solve this problem a search domain 

created to obtain the best value for (24), 
 

𝐷𝑛𝑒𝑤
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = |𝐶 . 𝑋⃗𝑏𝑒𝑠𝑡 − 𝑋⃗|  (24) 

 

Let the developed position of the shrinking encircling step is h,  
 

h = 𝑋𝑏𝑒𝑠𝑡 − 𝐴*𝐷𝑛𝑒𝑤
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (25) 

 

A comparison between the value of h and the position of each search agent should be achieved; 

therefore, if new values of h are smaller than the old position of search agent, it will be updated as a new 

position. To guarantees that the values of the position will be within the upper and lower bounds for the 

positive and negative values except when the value of position is positive, and the new value acquired from h 

is negative so that the recently updated position will update the absolute h. To obtain better performance for 

the required benchmark functions and the system that will discuss in the next section, the following 

Algorithm 1 represents the running procedure of the IWOA, 

 

Algorithm 1: The improved WOA 

 

Input: The IWO algorithm external parameters. 

Step 1: Specify the LB, UB and dimension of the selected fitness function; 

Step 2: Evaluate the fitness of each search agent and select the best one; 

Step 3: Begin the main loop and for each search agent update the values of, interval range (a), 

coefficient vector (A, C), a random number (L), and (p); 

Step 4: If p less than (0.5) and (A) less than (1) then update the current position by (23); 

Step 5: If A greater than (1), calculate the value of. (25), and the value of (h) using (26) based on 

the selection process of each search agent using (24); 

Step 6: Check the current position if exceed the UB or LB define in Step 1, then replace it by 

another value (h) such that the new value should be between the range of (UB, and LB) 

otherwise return to Step 5 and choose a new value;  

Step 7: If p greater than or equal to (0.5) then update the current position using (18 b); 

Step 8: Repeat Step 3 until it reaches the maximum number of iterations; 

Output: The optimum solution. 
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5. NUMERICAL RESULTS AND DISCUSSIONS 

5.1. Test functions details  

Test functions can be classified into single local minima or by another meaning (unimodal), and 

many local minima, which is called multimodal and other functions to test the performance of the 

optimization algorithm, whether it is good to use or not with a comparison with other well-known 

optimization algorithms to prove its effectiveness. The benchmark functions are a set of six unimodal 

functions have used (F01-F06), while five multimodal functions have been used (F07-F11), and lastly, fixed 

dimension multimodal functions are used (F12-F15). The comparison is performed with gravitational search 

algorithm [22] and particle swarm optimization [23]. 

 
5.2. Proposed algorithm evaluation 

The proposed algorithm has been tested based on the selected fifteen test functions and compared 

with the global optimization algorithms, namely, GSA and PSO. All test has been rerun 30 times with the 

maximum iterations of 500 and mean, and the standard deviation is calculated. Table 1 illustrates the results 

of the selected benchmark functions, while Figure 2. Show the IWOA performance versus other optimization 

algorithms for selected test functions (Sphere and Ackley functions). 

 

 

Table 1. Comparison of IWOA with WOA, GSA and PSO algorithms 

F 
IWOA WOA GSA PSO 

mean std mean std mean std mean std 

F1 3.5275E-107 1.4614E-106 1.3091E-74 6.8731E-74 0.0278 0.1520 8.9207E-05 1.0527E-04 

F2 27.9086 0.5040 27.9863 0.4426 107.3099 112.7567 78.2038 68.5566 
F3 0.5883 0.3614 0.4254 0.2013 13.2667 19.8319 2.4612E-04 4.3406E-04 

F4 9.5657E-26 5.2334E-25 4.4861E+04 1.3727+E04 971.1853 319.8463 89.5326 29.7383 

F5 1.1230E-25 3.0857E-25 46.2694 31.2569 8.0052 2.5682 1.0902 0.2153 
F6 0 0 0 0 29.8819 9.4226 60.3496 14.8764 

F7 1.2434E-15 1.0840E-15 3.9672E-15 2.4210E-15 1.1954E-08 2.4148E-09 0.1354 0.3701 

F8 0 0 3.7896E-15 1.4422E-14 29.3181 7.3381 53.1311 11.0473 
F9 0 0 0.0040 0.0217 25.9758 6.4710 0.0067 0.0086 

F10 0.0314 0.0219 0.0487 0.1270 1.5966 0.8672 0.0207 0.0633 

F11 0.0019 0.005 0.006329 0.003765 0.0049 0.0039 0.009236 0.0010973 

F12 -7.3048 2.7766 -6.6013 3.3175 -10.1891 1.713 -8.7908 2.7718 

F13 -8.2746 2.4917 -6.5921 2.8524 -6.4268 3.6015 3.6015 3.6015 

F14 -3.1992 0.1160 -3.1851 0.1253 -3.3179 0.0225 -3.2625 0.0605 

 

 

  
  

(a) (b) 

  

Figure 2. Algorithm’s performance comparison based on the selected test functions,  

(a) F1 (Sphere function), (b) F8 (Ackley function) 

 

 

As aforesaid, the unimodal test functions have only one local minima value while multimodal test 

functions have many local minima values increased by increasing the dimension number of the tasks. 

However, from the result achieved above, it is evident that unimodal test functions (F1, F4, F5 & F6), 
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multimodal test functions (F7, F8 & F10) tend to reach towards more optimal minimum value than that 

WOA. At the same time, it almost converges in (F2 & F3) and in fixed dimension multimodal function (F12), 

but they have a lower minimum amount than WOA, (F11, F13 & F14) are equally or less converges due to 

the nature of mathematical tasks used, which has a limited dimension range. Knowing that, each function was 

executed for 30 times of with 500 iterations to obtain the best average and standard deviation.  

 

5.3. AUV model results and discussions  

A mathematical model of AUV designed in Simulink platform as state-space block with a block 

diagram of the LQG controller, an observer with desired eigenvalues and noise power is depicted in Figure 3. 

While the band-limited white noise that utilized to examine the developed system in this research work is 

with (0.00001) power and (0.01) sample time, where the main research work objective is to remove the effect 

of this noise to enhance the AUV's work. A step input is considered as input in the overall proposed system 

shown in Figure 3. 

 

 

 
 

Figure 3. The overall proposed closed-loop system 

 

 

The proposed FOPID controller based on basic and improved algorithms depicted in Figure 4, where 

the objective functions that used to evaluate the performance index (PI) are integrated time absolute error 

(ITAE), integrated absolute error (IAE), and integrated squared error (ISE). Because of evolving additive 

white noise, the response of AUV vertical movement manages to be distorted and that evident in the yellow 

curve denoted the output of Luenberger observer (distorted signal). In addition, LQG signal is obtained that 

represented in the blue curve alongside with FOPID based WOA and IWOA algorithms are illustrated in 

Figure 5(a), while Figure 5(b) shows the distort signal, LQG signal, and the PID response based on WOA 

and IWOA algorithms when the noise power is increased to (0.001). In contrast, for each curve, other results 

are obtained based on time specifications (rising time, settling time, and maximum peak overshoot), as shown 

in Table 2 [24-27] when the first noise power (0.00001) is used, while Table 3 shows the time specifications 

when the noise power is increased to (0.001). The stopping criteria of the optimization algorithms depending 

on reaching a specific tolerance, instantly the simulation will stop with the most suitable characteristics of the 

system response. 

 

 

 
 

Figure 4. Proposed FOPID tuned by standard and improved WOA 
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(a) (b) 

  

Figure 5. The system response based on different controllers and optimization algorithms with distortion, 

(a) FOPID controller, (b) PID controller 
 

 

Table 2. Characteristics of output signal (Luenberger observer (distort signal), LQG, FOPID-IWOA, and 

FOPID-WOA) 

Specifications 
Distort 
signal 

LQG 

FOPID-IWOA FOPID-WOA 

Kp Ki Kd μ λ Kp Ki Kd μ λ 

0.1051 0.0376 0.3194 0.9929 0.9993 0.1036 0.0422 0.3587 1 0.9024 

Rising time 2.2688 2.1465 2.1460 0.9720 
Settling time 39.7474 38.6619 3.7542 16.1296 

P.O % 6.5937 0.2946 0.6260 6.9846 

peak 1.0597 1.0158 1.0083 1.0706 
Peak time 34.5797 39.7279 34.9547 2.4363 

 

 

From the result obtained in Table 2, it is evident that FOPID-IWOA has the lowest settling time 

between FOPID-WOA, and LQG while the lowest rising time take place in FOPID-WOA. The nearest point 

to step input and peak time can be seen in FOPID-IWOA followed by LQG, distort signal, FOPID-WOA; 

while the minimum overshoot spotted in ascending order in LQG, FOPID-IWOA, distort signal, FOPID-

WOA. Table 3 shows the system response of different controllers when noise is increased with their 

characteristics. 
 

 

Table 3. Characteristics of the output signal (Luenberger observer (distort signal), LQG, PID-IWOA, and 

PIDWOA) 

Specifications Distort signal LQG 

PID-IWOA PID-WOA 

Kp Ki Kd Kp Ki Kd 

0.1476 0.0583 0.3621 0.1592 0.0696 0.3688 

Rising time 2.3625 1.9773 1.6312 1.3755 

Settling time 39.9771 39.8559 7.3444 39.4393 

P.O % 69.7015 2.6361 8.9876 4.4435 
peak 1.5961 1.1572 1.0928 1.0960 

Peak time 34.5800 39.7300 4.2019 4.2753 

 

 

From the result obtained in Table 3, it is clear that PID-IWOA has the lowest settling time between 

PIDWOA and LQG while the lowest rising time toke place in PID-WOA. The nearest point to step input and 

peak time can be seen in PID-IWOA followed by PID-WOA, LQG, distort signal. At the same time, the 

minimum overshoot spotted in ascending order in LQG, PID-WOA, PID-IWOA, distort signal. 

 

 

6. CONCLUSION 

AUV model is formed based on linearized vertical motion control, and due to the noise, that caused 

by sensors or low turbulence on the AUV, that has to lead to distorting the response such as (rising time, 
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settling time, and overshoot) of the AUV which establishes as the main problem. Different controlling 

schemes were used like LQG, PID and FOPID that tuned based on standard and improved WOA. The 

proposed IWOA was tested, and the results are compared with other swarm algorithms using different test 

functions (unimodal, multimodal and fixed dimensions multimodal). IWOA showed that it tends to reach 

optimal minimum value that smaller than WOA and outperform on other natural-inspired algorithms.  

Simulation results for the AUV's system are obtained and compared for the controllers used as an 

example, the rising time of FOPID-IWOA is lower than LQG, lower than Luenberger observer (distort 

signal), while the settling time lower than LQG, and lower than distort the signal. At the same time, the rising 

time of PID-IWOA is lower than LQG, lower than Luenberger observer (distort signal) while the settling 

time lower than LQG, and lower than distort the signal. Finally, the performance of the system was 

enhanced, but at the same time, it took a higher number of iterations to reach these features. 
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