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 The industrial norm of tilting high speed trains, nowadays, is that of 

Precedence tilt (also known as Preview tilt). Precedence tilt, although 

succesfull as a concept, tends to be complex (mainly due to the signal 

interconnections between vehicles and the advanced signal processing 

required for monitoring). Research studies of early prior to that of 

precedence tilt schemes, i.e. the so-called Nulling-type schemes, utilized 

local-per-vehicle signals to provide tilt action (this was essentially a typical 

disturbance rejection-scheme) but suffered from inherent delays in  

the control). Nulling tilt may still be seen as an important research aim due to 

the simple nature and most importantly due to the more straightforward fault 

detection compared to precedence schemes. The work in this paper presents  

a substantial extension conventional to robust H∞ mixed sensitivity nulling 

tilt control in literature. A particular aspect is the use of optimization is used 

in the design of the robust controller accompanied by rigorous investigation 

of the conflicting deterministic/stochastic local tilt trade-off. 
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1. INTRODUCTION  

Tilting trains is a worldwide accepted technology concept in high speed railway transportation.  

It has been successfully established as a part of modern railway vehicle technology with many high-speed 

train services worldwide fitted with tilt [1-3] and an increasing interest for regional express trains as well as 

recently attempt to apply in metro systems [4]. The tilting concept is quite straightforward whereby usually  

a tilting mechanism (that is inverted pendulum-like platform) is employed to (mostly actively) lean  

the vehicle body inwards on track corners hence reducing the lateral acceleration level experienced by 

passengers. The particular benefit from tilting trains use is reduction in journey times due to increase of speed 

on track corners. From a more local (South-East Asia) area viewpoint, use of tilting service could be 

beneficial to the Malaysia High Speed Railway project since it presents a potentially cost effective solution to 

consider and hence potentially avoid building an extensive (and expensive) new rail-track infrastructure.  

In most cases of high speed tilting trains, active control is used to perform the tilting action  

and active tilting train systems technology has been greatly improved by the major contributions of control  

engineering [1-2]. Initial control design attempts on tilting trains employed the so-called “nulling" tilt control 

approach [5], i.e. feedback control from a single lateral accelerometer mounted on the body of the vehicle 

(regarding required tilt) passenger vehicle. This early attempt proved to be challenging to perform 

sufficiently fast response on the curve transitions without causing a degradation of ride quality on (straight) 

track misalignment as well as system stability. 

https://creativecommons.org/licenses/by-sa/4.0/
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As mentioned already nowadays tilting trains employ a command-driven system in which a signal 

from an accelerometer on a non-tilting part of the precedent vehicle (and sometimes from a database) 

commands the required tilting angle, with a straightforward tilt angle feedback controller locally ensuring 

that each vehicle tilts to the indicated tilt angle [6, 7]. This solution is commonly known as tilt with 

precedence i.e. utilise preview-tilt information from the previous vehicle with a sufficient level of filtering to 

be applied to remove the effect of track irregularities on the tilt command signal. Essentially tilt-with 

precedence attempts to improve the performance issues of “Nulling"-type. The preview-tilt approach  

is the currently accepted in industrial practice in tilting trains systems, but it can be a complex overall 

scheme; amongst other things it must reconfigure when the train changes direction, still difficult to provide  

a satisfactory performance for the leading vehicle of the train. It must be noted that GPS systems are used in 

some cases to provide the “when-to-tilt" (preview) command via track database information, although issues 

of signal quality communication, delays, and constraints due to tunnels may affect operation and add  

further complexity [1, 8, 9]. 

Previous studies of control applications in railway exist [10-12]. In recent publication specifically, 

many studies has been done before [13-15] and more recent studies in [16-18]. Although there is no depth 

investigation via optimization relative to tilt control interest-cost function H∞ mixed sensitivity controller 

design. It is proven to be difficult to achieve the trade off between deterministic and stochastic in tilt control 

performance via manually designed controller [7]. 

This paper presented, exactly this, i.e. the impact of optimizing H∞ mixed sensitivity controller  

in achieving improved results on the tilt control trade off between deterministic and stochastic performance  

via optimizing weight constraints. The controller performance is rigorously assessed using both  

frequency-domain and time-domain (simulation) analysis. 

 

 

2. MODELLING 

The simple tilting train setup use here with anti roll bar as tilt across secondary tilting mechanism. 

The end view vehicle is presented in Figure 1. The details mathematical expression can be referred to [16]. 

As expected in dynamic behavior railway system, actuator dynamics parameters systems are selected to 

provide damping of 50% and 3.5hz bandwidth. Linearised version of non linear behavior system is used here 

as it gives good approximation for analysis and designing robust controller. The overall roll angle from  

the horizontal (track elevation + expected tilt) shall not exceed 14 degrees. 
 

 

 
 

Figure 1. End view of anti roll bar (ARB) tilting vehicle structure [7] 
 

 

The nominal transfer function from mathematical model in [16] is given by (1) 
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With the state vector, control input and exogenous input vectors -(t) are dropped for simplicity. 

 

𝑥 = [ 𝑦𝑣  𝜃𝑣  𝑦𝑏   𝜃𝑏  𝑦̇𝑣  𝜃̇𝑣  𝑦̇𝑏  𝜃̇𝑏 𝜃𝑟  𝛿𝑡   𝛿̇𝑡   𝑦𝑤   (𝑦_𝑤 ) ̇]𝑇, 𝑢 = [𝛿𝑡𝑖] 

 Tooooo yyRRw  11 −−=  
(2) 

 

The details definition of values and parameters in (2) was presented in [16]. This represent 60% tilt 

compensation of effective cant deficiency and ideal control input tilt angle ∆(𝑡−𝑖). From nominal transfer 

function in (1), it is noticeable that the existence of non minimum phase(NMP) zeros located at 29.36  

and 6.02. It is well known that the existence of NMP zeros on the right hand plane will constraint  

the bandwidth. It is difficult to design good and robust controller due to this NMP zeros location that is close 

to origin. There are two exogenous inputs used as assessments in this model, (i) deterministic track input  

and (ii) straight track misalignment in lateral direction also known as stochastic track input [19].  

The stochastic track input velocity spectrum is represented by, 
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Where 𝑣 is the vehicle speed (58 m/s – 30% higher than non-tilt) and 𝑓𝑡 is the temporal frequency in Hz. For 

simulation purpose, the value of Ω1 is chosen according to typical medium-quality rail track which  

is 0.33 ×  10−8 𝑚. For deterministic track inputs a rail track corner with maximum cant angle 𝜃𝑜
{𝑚𝑎𝑥}

 of 6 

degree, maximum curve radius 𝑅𝑚𝑎𝑥 = 1𝑘𝑚, transition length = 145𝑚 at each end and track length of 

1.2𝑘𝑚 are used in simulation process. The weight lateral acceleration of passenger by 𝑤𝑧 Sperling index  

is assessed for ride quality purpose [20]. 

 

2.1. 𝑯∞ mixed sensitivity controller design 

The 𝐻∞ mixed sensitivity controller design is useful in order to achieve robust control performance. 

With a robust design, the stability of the system in nominal plant can be achieved. In tilt control especially, 

manual design of 𝐻∞mixed sensitivity was investigated in [21]. However, it is proven that by using manual 

design, the tilt control performances trade off are difficult to achieved. Here, the SISO advanced  

(integer-order) robust approach is extended by using optimization in tuning the related weighting f 

unctions for the 𝐻∞ mixed sensitivity design. The feedback structure of the proposed controller designed  

is shown in Figure 2.  
 

 

 
 

Figure 2. H_infinity mixed sensitivity feedback structure 
 

 

𝑊1, 𝑊2 and 𝑊3 is frequency weight for sensitivity S(jw), control sensitivity (KS(jw)) and complimentary 

sensitivity (T(jw)). The overall minimization is summarized in (4), where ∞ (means infinity norm) 
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Here, we designed 𝑊3 as multiplicative uncertainty bound covers NMP zeros in (1) based on the previous 

paper by [19]. This bound is illustrated in Figure 3. 𝑊1 and 𝑊2 is obtained via optimization. We presented 

two cases of optimization, 𝑃1 (all the weight sensitivity are included in the optimization process) and 𝑃2 

where 𝑊3 is excluded. 
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Figure 3. Multiplicative uncertainty bound W3 

 

 

The second order transfer function formula for 𝑊1 in (6) was introduced by [22, 23] where 𝑊𝐵∗  

is maximum frequency bandwidth, M is the maximum peak of Sensitivity (S(jw)) and A is maximum steady 

state error. The initial value of upper and lower bound of 𝑊1 was obtained from previous PID design  

by [24, 25]. The presented framework is designed to have closed-loop stability, good tracking or disturbance 

rejection performance and robust stability. However, robust performance analysis assessment will not be 

included in this paper. The optimization process is implemented via 𝑓𝑚𝑖𝑛𝑐𝑜𝑛( ) in MATLAB.  

The minimization problem for 𝐻∞ mixed sensitivity is given by, 

 

Minimize f(x)=PCT standing 

Subject to < constraint=rdq ≦7.5% > 
(7) 

 

Where 𝑃𝐶𝑇  standing is the percentage of standing passengers feeling uncomfortable on curve transition  

and r.d.q is ride degradation quality compared to non tilting trains based on Europe standard [20]. The results 

of tuned weight sensitivity via optimization is presented in Table 1.  
 
 

Table 1. Weight sensitivity parameters for P1 and P2 
Minimization ID 𝑊1 𝑊2 𝑊3 

𝑃1 
𝑠2 + 1.317𝑠 + 0.4337

1.255𝑠2 + 0.06102𝑠 + 0.0007416
 0.9355 as in eq. (5) 

𝑃2 
𝑠2 + 3.06𝑠 + 2.341

2𝑠2 + 0.1375𝑠 + 0.00236
 0.7043 NA 
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3. RESULTS AND ANALYSIS  

The nominal tilt performance and performance margins for both 𝑃1 and 𝑃2 with full order controller 

is presented in Table 2 and Table 3. The results for both cases shows very satisfactory and improved tilt 

performance compared to the one presented in [24, 25]. By not including complimentary sensitivity in 

optimization problem, 𝑃2 gives better 𝑃𝐶𝑇 performance for both standing and seating (less is better in this 

case). Also for both cases, less than 7.5% ride quality degradation is obtained. Both trade-off between 

deterministic and stochastic that is difficult to achieved via manual design can be achieved via 𝐻∞ mixed  

sensitivity optimization. 

 

 

Table 2. Nominal tilt performance for P1 and P2 
𝐻∞ 𝑚𝑖𝑥𝑒𝑑 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 optimization 𝑃1 𝑃2 

PCT 

related 

Standing (% of passeng.) 48.703 46.41 

Seated (% of passeng.) 13.029 11.912 
Ride quality 

(passenger comfort) 

Tilting train 3.059 3.052 

Degradation. (%) 7.413 7.166 

 

 

Table 3. Performance margin 
Cases 𝑃1 𝑃2 

Gain margin (dB) 8.306 6.243 

Phase margin (deg) 52.682 44.513 
Bandwith (rad/s) 1.25 1.23 

‖𝑆(𝑗𝑤)‖∞ 1.625 1.925 

 

 

Stable performance margins can be seen on Figure 4. Both cases show satisfactory open loop 

response with satisfies gain and phase margin. In term of lateral acceleration, 𝑃2 case perform faster than 𝑃1. 

This can be see in Figure 5.  

 

 

  
  

(a) (b) 

  

Figure 4. Open loop frequency response for P1 (a) and P2 (b) 

 

 

Although in nominal performance with the introduction of complimentary sensitivity 𝑊1 less 

superior compared to 𝑃2 case, it is expected to gives better robust performance . More conservative controller 

designs tend to provide better robust performance but can be far from the desired aim of improving  

Nulling-type tilt control performance. 
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Figure 5. Lateral acceleration for P1 (alpha) and P2 (beta) 

 

 

4. CONCLUSION  

This paper has presented an optimized viewpoint of H∞ mixed sensitivity design for tilt control 

(emphasizing the single input single output (SISO) problem aspect in this application). The impact of  

the proposed controller in nominal performance was showcased via extensive simulation results.  

With the presented benefits of proposed controller with respect to tilting train control performance,  

the (optimized) H∞ -mixed sensitivity controller design approach can be applied to other active suspension 

vehicle problems. Future points of interest relating to the extension of this work are controller reduction 

(while maintaining robust performance) considering a gain-scheduled framework. 
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