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 In this study, we attempted to find the optimal hyper-parameters of  

the convolutional recurrent neural network (CRNN) by investigating its 

performance on acoustic event detection. Important hyper-parameters such  

as the input segment length, learning rate, and criterion for the convergence test, 

were determined experimentally. Additionally, the effects of batch normalization 

and dropout on the performance were measured experimentally to obtain their 

optimal combination. Further, we studied the effects of varying the batch 

data on every iteration during the training. From the experimental results 

using the TUT sound events synthetic 2016 database, we obtained optimal 

performance with a learning rate of     . We found that a longer input 

segment length aided performance improvement, and batch normalization 

was far more effective than dropout. Finally, performance improvement was 

clearly observed by varying the starting points of the batch data for each iteration 

during the training. 
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1. INTRODUCTION  

Recently, there has been increasing research interests in acoustic event detection, where the existence  

and occurrence times of the various sounds in our daily lives are identified. There are many applications for 

acoustic event detecton, including surveillance [1, 2], urban sound analysis [3, 4], information retrieval from 

multimedia contents [5], health care monitoring [6-7] and bird call detection [8, 9]. Deep neural networks 

(DNNs) have demonstrated superior performance to conventional machine learning techniques in image 

classification [10-12], speech recognition [13-15], and machine translation [16, 17]. In [18], we see that  

the feedforward neural network (FNN) now outperforms the Gaussian mixture model (GMM) and support 

vector machine (SVM), which have traditionally been employed for acoustic event detection. FNN has  

also been shown to outperform the conventional GMM-HMM-based methods in polyphonic acoustic  

event detection [19]. Therefore, we can say that current studies on acoustic event detection mainly focuse on  

DNN-based approaches. 

However, due to the fixed connection between the input and hidden layers, FNN is apparently 

inadequate to overcome the signal distortions in image classification. Similarly, it is apparent that FNN  

is also insufficient for acoustic event detection as audio signal distortions are frequently encountered in  

the 2-dimensional time-frequency domain of the signal. Another problem with FNN lies in modeling the correlation 

between the time-frames of the audio signal. As FNN only concatenates several input frames together to model  

the time correlation, it often fails to model the long-term time correlations of the audio signal. 

https://creativecommons.org/licenses/by-sa/4.0/
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Convolutional neural networks (CNNs) can alleviate the limitation of FNN using 2-dimensional 

filters, whose parameters are shared along the time and frequency shift [20], and it has exhibited superior 

performance to FNN in various pattern recognition tasks. Particularly, due to its structural characteristics, 

CNN can efficiently handle image distortions in the 2-dimensional space [10]. Similarly, we expect that  

the time-frequency domain distortions occurring in the audio signal can be accurately modeled by CNN. 

Nevertheless, CNN is inefficient for modeling long-term time correlations between audio signal samples. 

Recurrent neural networks (RNNs) have been used successfully in speech recognition [13],  

and are superior to other neural networks in modeling the time-correlation information of the time-series 

signals such as speech and audio. However, because RNN is unable to tackle 2-dimensional distortions in  

the time-frequency domain of the audio signal, its performance is usually inferior to CNN when used alone in 

acoustic event detection. Recently, there have been some approaches to combine CNN and RNN for their 

combined merits. Among them, convolutional recurrent neural networks (CRNNs) have been used 

successfully for acoustic event detection [21], speech recognition [22], and music classification [23].  

As CRNN is constructed by connecting CNN, RNN, and FNN in series, it is more complex than other neural 

networks; therefore, the combined effect of the networks is difficult to predict. Moreover, as the use of CRNN  

on acoustic event detection is in its early stages, there are few research studies on optimizing the various  

hyper-parameters of CRNN.  

Therefore, we attempted to find the optimal hyper-parameters of CRNN for acoustic event  

detection in this study. Several experiments were performed to identify the optimal hyper-parameters of 

CRNN, and we used the test results on the validation data to determine the hyper-parameters.  

Important hyper-parameters, such as the input segment length, learning rate, and criterion for  

the convergence test were determined from the experiments. Additionally, the effects of batch normalization 

and dropout on the performance were observed. We also studied the effects of varying the batch data in every 

iteration during the training. This paper is organized as follows. In Section 2, we introduce the feature 

extraction method for audio signals as well as the architecture of the CRNN used for acoustic event detection. 

In Section 3, we present and discuss various experimental results, and conclusions are given in Section 4. 

 

 

2. FEATURE EXTRACTION AND CRNN ARCHITECTURE 

2.1. Feature extraction  

In this study, we used log-mel filterbank (LMFB) outputs as input features for CRNN and the entire 

process of feature extraction is shown in Figure 1. We first computed short-time Fourier transform (STFT) 

from the 40-ms audio signals, which are sampled at 44.1 KHz. STFTs were computed at every 20 ms with 

50% overlap [21]. Further, 40-dimensional mel filterbanks were extracted from the STFTs spanning 0 to 

22050 Hz, and they were log-transformed to obtain the LMFBs, which are normalized by subtracting  

the mean and dividing by standard deviation of the entire training data. 

 

 

 
 

Figure 1. Extraction process of log-mel filterbank (LMFB) 

 

 

2.2. The architecture of CRNN  

Figure 2 presents the architecture of the CRNN used in this paper. CRNN consists of CNNs 

followed by RNN and FNN in sequence. The CNNs act as audio feature extractors, which are robust against 

distortions in the time-frequency domain. The RNN utilize the time-correlation information of the audio 

signals. Finally, the FNN serves as an output layer, which produces the posterior probabilities for each sound class at 

each time frame. 

As CNN takes 40-dimensional LMFBs as input features, the dimension of the input of the CNN  

is Tx40, where the length of the input segment is set to T. The CNN consists of 3 convolution layers, each of 

which has 256 feature maps with 5 5 filters. The output of the filter is processed by batch normalization  

and then passes through ReLU activation function. To maintain the time-domain dimension, max pooling  

is performed only in the frequency-domain. Further, dropout is applied at a rate of 0.25 after the max pooling 

layer [10]. The input segment length T is set to 1024 frames (20.48s). We experimented with different values 

of T to find the one that produced the best result on the validation dataset. 
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The output of the CNN is input to the RNN, which consists of 256 gated recurrent units (GRUs).  

The output layer consists of K units with sigmoid activation function, where K represents the number of 

acoustic event classes. The sigmoid activation function produces the posterior probabilities for each class at 

each time frame, from which we decide whether an acoustic event is active based on a threshold (0.5). 
 

 

 
 

Figure 2. Architecture of the CRNN used for acoustic event detection 

 

 

3. EXPERIMENTAL RESULTS 

3.1. Database and evaluation metric  

To evaluate the performance of CRNN on acoustic event detection, we used the TUT sound events 

synthetic 2016 (TUT-SED Synthetic) database, which is popularly used in this area [24]. TUT-SED Synthetic 

contains artificially generated audio data, because it is difficult to obtain enough data using only audio data 

recorded in real environments. Moreover, the subjective labelling error can be mitigated by artificial data. TUT-SED 

Synthetic was generated by mixing isolated sound events from 16 different classes. The total length of the data is 566 

minutes, which were divided into training, testing, and validation data with proportions of 60%, 20%,  

and 20%, respectively. Segments of length 3-15 seconds were used for the training, testing, and validation, 

and there were no common acoustic event instances between them. The detailed sound classes and their total 

duration in the database are shown in Table 1. 

For the evaluation metric of the acoustic event detection, we used both error rate (ER) and F-score [25].  

We adopted two types of evaluation methods:, segment and event-based. In the segment-based method,  

the binarized outputs of the CRNN are compared with the ground truth table in every segment of length 1 s.  

In the event-based method, the output of the CRNN are compared with the label in the ground truth table 

whenever an acoustic event has been detected by CRNN [25]. We sought the optimal hyper-parameters of  

the CRNN by applying various conditions during the training. To find the optimal learning rate,  

we experimented as we changed the learning rate. The results are shown in Table 2. 

We applied batch normalization and dropout in all cases, and binary cross entropy was employed as 

the loss function, which acts as the criterion for the convergence of the weights. The Adam optimizer was 

used to optime the neural networks. As seen in Table 2, the optimal CRNN performance was achieved at  

a learning rate     . Generally, as the optimal learning rate for the neural networks is not pre-determined, 

and varies by both network architecture and amount of training data, we searched for the optimal learning 
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rate by observing the performance of the validation data set. We can see in Table 2 that the best learning rate 

for the testing data is same as the learning rate that achieves the best performance on the validation data.  

This indicates that it is reasonable to determine the optimal learning rate of CRNN by its performance on  

the validation data. Table 2 also shows that as the learning rate decreases, the number of epochs that shows 

the best performance increases. For example, the number of epochs is 33 when the learning rate is     , 

whereas it increases to 191 with the learning rate of     . The larger number of epochs indicates a slower 

convergence of the CRNN parameters, which causes performance degradation due to the underfitting of the neural 

networks. In contrast, when the learning increases to     , the number of epochs decreases dramatically to 16,  

which causes overfitting and results in performance degradation. 

To investigate the performance variation with the learning rate further, we show, (as shown in Figure 3),  

the variation of the loss function and accuracy at the output of the CRNN during the training as the learning 

rate varied from      to     . When the learning rate is     , it can be seen that the loss function on  

the validation data reaches its minimum at approximately 30 epochs (33 precisely) and subsequently 

fluctuates (but never falls below the minimum). However, for the training data, the loss function decreases 

from the beginning to the end of the training (we set the maximum number of epoch to 200). As it  

is important for the networks not to be overfitted, we stopped the iteration at 33 epochs by the early stopping 

algorithm mentioned previosuly. Meanwhile, we see different characteristics when the learning rate is     . 

The loss function on the validation data decreases for longer and reaches its minimum at 157. The longer 

iterations contribute to decrease the performance of the CRNN with both validation and test data due to  

the underfitting problem. This phenomenon becomes more pronounced as we further decrease the learning rate.  

When the learning rate is     , the loss function does not reach its minimum until the end of the training. A similar 

trend is observed when we monitor the accuracy instead of the loss function. 

We investigated the effect on performance as we changed the input batch data in every epoch of  

the training. The starting points of each batch data were shifted at each epoch making the input segments at 

successive epochs differ by the shift-length. For the evaluation, both segment-based and event-based methods 

were used and the results are shown in F-score and ER. We used ER as the convergence criterion for  

the training. Further, early stopping was employed where we stopped the training when the convergence 

criterion did not improve for more than 100 epochs on the validation data. This was to prevent overfitting, 

and the maximum number of epochs was set to 200. We also investigated the effects of batch normalization (BN) 

and dropout. BN has been used to mitigate the vanishing and exploding gradient problems in the backpropagation 

algorithm, and we used BN before the ReLU activation function in the convolution layer. Dropout is a popular 

regularization method in the neural networks, which is used to exclude the neurons from training at  

a predefined probability (dropout rate). In this study, dropout is used in all layers of the CNN and RNN (but not 

the FNN [18]. 

In Table 3, the results of using the shift of batch data are presented. In the segment-based evaluation, 

we see an improved average F-score/ER of 63.18%/0.52 using the shift compared to the F-score/ER  

of 62.11%/0.54 without the shift (non-shift). We also observe slight performance improvement in  

the event-based evaluation. From these results, we confirm that superior performance is expected by  

the batch data shift for training the CRNN. 

 Table 3 also shows the effects of BN and dropout on performance. Expectedly, the best average F-score/ER 

is obtained when applying both BN and dropout (56.67%/0.71). If we apply only BN without dropout, we see 

slight performance degradation (54.54%/0.79), which implies that the effect of dropout on performances  

is not significant. Meanwhile, if we do not apply BN, the performance degrades significantly (regardless of 

whether we apply dropout), and the poorest result is obtained when we apply neither BN nor dropout 

(47.15%/0.81). In Table 4, we compare the performances of the CRNN between two convergence criteria (ER and 

F-score) for training. BN and dropout were applied and the overlap method was used. In the table, we observe 

slight performance improvementa with ER, but the performance difference appears negligible, and we 

conclude that the ER and F-scores can be used as the convergence criteria without significantly affecting  

the performance. 
 
 

Table 1. Sound classes and their total duration in seconds on the TUT-SED synthetic 2016 databases 
Classes Duration(s) Classes Duration(s) 

Glass 621 Motor cycle 3691 
Gun 534 Foot steps 1173 

Cat 941 Claps 3278 

Dog 716 Bus 3464 
Thunder 3007 Mixer 4020 

Bird 2298 Crowd 4825 

Horse 1614 Alarm 4405 
Crying 2007 Rain 3975 
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Table 2. Performance of CRNN as learning rate changes 
Leaning rate Validation data (F-score/ER) Testing data (F-score/ER) Epoch 

Segment Event Segment Event 

     61.69%/ 0.52 37.69%/0.96 60.61%/0.53 37.05%/0.97 16 

     68.75%/ 0.45 43.49%/0.88 64.21%/0.50 40.50%/0.96 33 

     66.44%/ 0.49 39.10%/0.96 63.76%/0.52 36.48%/1.04 157 

     44.16%/ 0.69 9.83%/1.24 43.38%/0.71 10.82%/1.27 191 

 
 

     

 

Figure 3. Variation of loss function and accuracy as learning rate changes 
 
 

Table 3. Performance of CRNN with various training conditions 
BN Drop out Segment-based (F-score/ER) Event-based (F-score/ER) Average 

Shift Non-shift Shift Non-shift 

Yes No 66.10%/0.48 65.28%/0.54 43.80%/1.01 42.99%/1.12 54.54%/0.79 

Yes Yes 67.24%/0.49 66.62%/0.49 45.93%/0.94 46.88%/0.92 56.67%/0.71 

No No 58.58%/0.57 58.88%/0.58 35.47%/1.06 35.68%/1.04 47.15%/0.81 
No Yes 60.80%/0.54 57.67%/0.56 40.02%/0.97 39.18%/1.00 49.4%/0.77 

Average 63.18%/0.52 62.11%/0.54 41.3%/1.0 41.18%/1.02  

 

 

Table 4. Performance of CRNN depending on the convergence criterion 
Convergence Criterion Segment-based (F-score/ER) Event-based (F-score/ER) Average 

ER 67.24%/0.49 45.93%/0.94 56.59%/0.72 

F-score 66.45%/0.51 44.97%/0.98 55.71%/0.75 

 
 

Finally, in Table 5, we show performance variation as we changed the length of the input segment of  

CRNN. Compared to shorter lengths (2.56s, 5.12s), longer length segments (10.24s, 20.56s) show better 

performances. This may be due to the fact that many of acoustic events in the TUT-SED Synthetic have long 

lengths and the RNN can efficiently capture the time-correlations in the long segments. 
 

 

Table 5. Performance of CRNN depending on the length of the input segment 
SegmentLength (s) Segment-based (F-scores/ER) Event-based (F-scorse/ER) Average 

2.56 66.84%/0.51 42.75%/1.13 54.80%/0.82 

5.12 67.47%/0.50 44.27%/1.04 55.87%/0.77 

10.24 68.01%/0.47 45.33%/0.97 56.67%/0.72 
20.56 67.24%/0.49 45.93%/0.94 56.54%/0.70 
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4. CONCLUSION 

For acoustic event detection, approaches based on deep neural networks have demonstrated  

superior performances to conventional machine learning methods, such as GMM and SVM. Among them, 

CRNN is thought to be well suited for acoustic event detection due to its ability to reduce signal distortions in  

the time-frequency domain as well as in exploiting the temporal-correlation information of the audio signal.  

In this study, we empolyed CRNN as the classifier for the acoustic event detection, and several of  

its conditions were tested by extensive experiments to determine its optimal hyper-parameters. 

In the experiments, by varying the learning rate, we found that the optimum performance is obtained 

when the learning rate is set to     . From the results, we could also see that the learning rate that exhibits 

optimum performance on the validation data also performs best in the testing data. This suggests that it  

is reasonable to determine the optimal learning rate based on performance tests on the validation data.  

We further confirmed that BN and dropout contributed to improving the performance of CRNN.  

Particularly, BN had a larger impact on the performance improvement than dropout.  

Instead of using identical batch data at every iteration, we obtained improved performance by 

changing the batch data in every iteration, which resulted from increasing the number of training samples for 

CRNN. We further found that the length of the input segments of the CRNN also affects the performance. 

We obtained better performance using longer segments, as the acoustic event used in this paper had relatively 

long time-durations. 

 

 

ACKNOWLEDGEMENTS 

This research was supported by Basic Science Research Program through the National Research 

Foundation of Korea (NRF) funded by Ministry of Education (No. 2018R1A2B6009328). 

 

 

REFERENCES 
[1] M. K. Nandwana, et al., “Robust Unsupervised Detection of Human Screams In Noisy Acoustic Environments,” 

2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, QLD,  

pp. 161-165, 2015. 

[2] M. Crocco, et al., “Audio Surveillance: A Systematic Review,” ACM Computing Surveys, no. 52, 2016. 

[3] J. Salamon and J. P. Bello, “Feature Learning with Deep Scattering for Urban Sound Analysis,” 2015 23rd 

European Signal Processing Conference (EUSIPCO), Nice, pp. 724-728, 2015. 

[4]  S. Ntalampiras, et al., "On Acoustic Surveillance of Hazardous Situations", 2009 IEEE International Conference 

on Acoustics, Speech and Signal Processing, Taipei, pp. 165-168, 2009. 

[5] Y. Wang, et al., “Audio-based Multimedia Event Detection Using Deep Recurrent Neural Networks,” 2016 IEEE 

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, pp. 2742-2746, 2016. 

[6] D. Stowell and D. Clayton, “Acoustic Event Detection for Multiple Overlapping Similar Sources 2015 IEEE 

Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, pp. 1-5, 2015. 

[7] G. Dekkers, et al., “DCASE 2018 Challenge - Task 5: Monitoring of domestic activities based on multi-channel 

acoustics,” KU Leuven, Tech. Rep., 2018. 

[8] D. Stowell, et al., “Automatic Acoustic Detection of Birds through Deep Learning: the First Bird Audio Detection 

Challenge,” Methods in Ecology and Evolution, vol. 10, no. 3, pp.1-21, 2018. 

[9] F. Briggs, et al., “Acoustic Classification of Multiple Simultaneous Bird Species: A Multi-instance Multi-Label 

Approach,” The Journal of the Acoustical Society of America, vol. 131, no. 6, pp.4640-4640, 2012. 

[10] A. Krizhevsky, et al., “Imagenet Classification with Deep Convolutional Neural Networks,” Advances in Neural 

Information Processing Systems, vol. 25, no. 2, pp. 1097-1105, 2012. 

[11] K. He, et al., “Deep Residual Learning for Image Recognition,” 2016 IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), Las Vegas, NV, pp. 770-778, 2016. 

[12] Olga Russakovsky, et al., “ImageNet Large Scale Visual Recognition Challenge,” International Journal of 

Computer Vision, vol. 115, no. 3, pp. 211-252, 2015. 

[13] A. Graves, et al., “Speech Recognition with Deep Recurrent Neural Networks,” 2013 IEEE International 

Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, pp. 6645-6649, 2013. 

[14] J. Chorowski, et al., “Attention-Based Models for Speech Recognition,” in Proceedings of the 28th  International 

Conference on Neural Information Processing Systems (NIPS), vol. 1, pp. 577-585, 2015. 

[15] A. Hannun, et al., “Deep Speech: Scaling up End-to-End Speech Recognition,” arXiv: 1412.5567, 2014.  

[16] K. Cho, et al., “Learning Phrase Representations Using Rnn Encoder-Decoder for Statistical Machine Translation,” 

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),  

pp. 1724-1734, 2014. 

[17] I. Sutskever, et al., “Sequence to Sequence Learning with Neural Networks”, in Proceedings of the 27th  

International Conference on Neural Information Processing Systems (NIPS), pp. 3104-3112, 2014. 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Performance analysis of the convolutional recurrent neural network on acoustic event … (Suk-Hwan Jung) 

1393 

[18] S. H. Chung and Y. J. Chung, “Comparison of Audio Event Detection Performance using DNN,” Journal of the 

Korea Institute of Electronic Communication Sciences, vol. 13, no. 3, pp. 571-577, 2018. 

[19] E. Cakir, et al., “Polyphonic sound event detection using multilabel deep neural networks,” 2015 International 

Joint Conference on Neural Networks (IJCNN), Killarney, pp. 1-7, 2015. 

[20] Y. LeCun, et al., “Gradient-based learning applied to document recognition,” in Proceedings of the IEEE, vol. 86, 

no. 11, pp. 2278-2324, 1998. 

[21] E. Cakir, et al., “Convolutional Recurrent Neural Networks for Polyphonic Sound Event Detection,” in IEEE/ACM 

Transactions on Audio, Speech, and Language Processing, vol. 25, no. 6, pp. 1291-1303, 2017. 

[22] T. N. Sainath, et al., “Convolutional, Long Short-term Memory, Fully Connected Deep Neural Networks,” 2015 

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, QLD,  

pp. 4580-4584, 2015. 

[23] K. Choi, et al., “Convolutional Recurrent Neural Networks for Music Classification,” 2017 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, pp. 2392-2396, 2017. 

[24] “TUT-SED Synthetic,” 2016. [Online]. Available at: http://www.cs.tut.fi/sgn/arg/taslp2017-crnn-sed/tut-sed-synthetic-2016 

[25] A. Mesaros, et al., “Metrics for polyphonic sound event detection,” Applied Sciences, vol. 6, no. 6,  

pp. 162-178, 2016. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Sukwhan Jung received his B.Sc. and M.Sc. Degree in Electronics Engineering from Keimyung 

University, Daegu, South Korea in 2016 and 2018, respectively. He has been with Samju 

Electroincs Co. since March 2018. His main research interests are audio event detection under 

noisy environments and deep learning for artificial intelligence. 

  

 

Yongjoo Chung received his B.Sc. degree in Electronics Engineering from Seoul National 

University, Seoul, South Korea in 1988. He earned his M.Sc. and PhD degree in Electrical and 

Electronics Engineering from Korea Advanced Science and Technology, Daejon, South Korean 

in 1995. He is currently a Professor with the Department of Electronics Engineering at 

Keimyung University, Daegu, S. Korea. His research interests are in the areas of speech 

recognition, audio event detection, machine learning and pattern recognition. 

 


