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 Multi-taper method (MTM) acts as an effective detector of spectrum sensing in 

Cognitive radio networks. In this paper, an analytical study was proposed in 

which reliable, simple, and computationally efficient mathematical terms for 

the mean and variance of the probability density function (PDF) were derived 

using the MTM technique. The closed-form expressions for the probability  

of detection and false alarm for the MTM detector were obtained accordingly.  

The proposed analytical study was evaluated by intensive simulations using 

MATLAB. Different simulation techniques were proposed to verify the derived 

analysis. The existence of white Gaussian noise was assumed. Important 

aspects of spectrum detection in cognitive radio networks were included such 

as, receiver operating characteristics, detection rate versus signal to noise ratio 

(SNR), and the minimum desired sample points for a specific performance.  

A comparison was completed with the energy detection technique and all  

of the results suggested that the proposed paradigm is both credible  

and powerful under all the parameters considered in the simulation. 
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1. INTRODUCTION  

As more technologies are transitioning to being completely wireless; both novel wireless 

applications, and services are expected to increase rapidly. As a result, the spectrum scarcity problem  

is worsening in certain bands. Cognitive radio (CR) which has been introduced by Mitola et al. [1]  

is a promising candidate to solve the spectrum deficiency issue by utilizing the radio spectrum in a more than 

an efficient manner. A reliable sensing technique is required to detect these resources, and to protect  

the primary user from interference.  

The unpredictability of wireless signals [2-10] motivates the sensing algorithms to develop more 

methods to analyze different signal types. This is because the wireless signals often contain unknown 

parameters; such as: amplitude, phase, time delay, and frequency. These parameters must be first estimated 

before signal detection. Sensing algorithms are classified into two categories: parametric and non-parametric 

procedures. Parametric procedures are paradigm-based approaches, where some previous knowledge of  

the signal is known ahead of time. Using this information, a signal model can be assumed prior to  

the calculation of the power spectrum density [11, 12], such as matched filter and cyclostationary detection 

methods [13-15]. Despite the estimation being more accurate and precise; previous knowledge of the primary 

user's (PU’s) signaling creates a major challenge for CR.  

https://creativecommons.org/licenses/by-sa/4.0/
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Non-parametric, on the other hand, does not rely on a fixed set of parameters, since these parameters 

are varying over time. Under no assumptions about the physical process of a given data, the power  

is estimated from Fourier-based methods where no prior model is supposed. The conventional  

non-parametric methods such as periodogram detection [16] suffer from spectral leakage effects, resulting 

from bad bias, that often mask weak signals. The recent non-parametric techniques such as multi-taper [17] 

always compromises between the bias and the variance of the detected signals. In theory, MTM reduces the 

variance of the power estimates by obtaining the signal power from the sum of an orthogonal narrowband 

windows that have the same length. In other words, this method reduces estimation variance by obtaining 

multiple independent estimates from the same samples. This is done by employing a small set of windows 

rather than the unique data window or spectral taper. 

The underlying concept of multi-taper detector is based on applying a set of windows sequences, 

which Thomson discussed in [18]. These sequences are known as discrete prolate Slepian wave functions 

(DPSWF). The most clarifying fact about these sequences is the orthogonal property, which means that,  

the DPSS will return the O/P as uncorrelated independent sequences, in addition to the different variance for 

each time sequence. Combining all these sequences concentrates the power in a main lobe and reduces it in 

the side lobes. Furthermore, there is an obvious improvement in the variance. 

Most literature on this subject [19-22] provides the analytical formula of multi-taper based detector, 

which is useful to a particular extent in spectrum sensing; however, there is a need for simple analytical  

closed-from terms for numerical evaluations. In [19], an optimal detection is also proposed, and applied using 

actual HDTV data. However, the mean (μ) and variance (σ2) are calculated from complicated expressions 

that need to be done through a numerical method to calculate the threshold voltage. 

In [20], an optimal detector for enhancing the sensing performance of multi-taper detector in CR 

networks is discussed. The analysis is based on Neyman-Pearson theorem, in which the ratio between the 

power spectrum density PSD for the signal affected by noise and PSD for noise only, has to be maximized 

through the likelihood ratio test (LRT). The natural logarithm is also used to smooth the estimated power. 

The mean and variance of the power spectrum density are derived from the smooth estimated power.  

The results show that the proposed detector is more accurate than the energy detector since there is a 48% 

increase in detection performance in comparison to the energy detector. In addition, the desired sample size 

(N) of the proposed detector is reduced by 73.3%. However, the building blocks of the mean and variance, 

are computationally demanding.  

In [22], the estimated power is approximated from chi-square distribution to normal distribution  

for large sample size. The simple formula for the mean and variance are derived accordingly. Regarding  

to the derived analysis, the variance does not change as the number of tapers (K) rises. It should be observed 

that the mean is a linear function of (K), which implies that the mean proportionally increases with the 

number of tapers (K). Therefore, the derived formulas contradict the concept of MTM. 

Considering the above limitations, a reliable, and a simple computation of a mathematical closed 

form expression of MTM detector is derived. Through an intensive analysis of different simulation 

parameters, the precision of the proposed paradigm is verified. The results demonstrate that the proposed 

paradigms outperform other detection systems, for example, it is 40% better than the energy detector. Also, 

this system needs only (K) times of sample to achieve the same detection accuracy. The results are also 

compared with a previous model of the same systems but a reliable one. It is noted from these results that  

the proposed paradigm achieved the same detection accuracy, using the same sample size, but at simple 

computation of mathematical expressions. 

The remaining parts of the paper are organized as follows: Section 2 describes the MTM spectrum 

sensing method. In section 3, the proposed test statistic and correction factor is discussed. Finally, section 4 

shows the simulation and discussion results. In section 5, the conclusion of the paper is presented. 

 

 

2. THE PROPOSED MULTI-TAPER PARADIGM 

A non- stationary signal generated from a random statistical process is considered. At the CR 

receiver, the signal is sampled to get the finite discrete sample Xn; n=0; 1: N-1, where N is the sample 

number. Then, Xn is multiplied by a number of discrete Slepian sequences Hn
k(N,W) of length N which  

are represented by orthogonal tapers to concentrate the energy of the received PU signal in the interval 

between (-W, W). The time to bandwidth product is NW and the total tapers is K=2NW-1 with their 

associated Eigen values of the kth taper are λk. The products are, then, applied to FFT to get the power 

concentrated in a chosen bandwidth (-W,W), as shown in Figure 1. The dot product of the finite discrete 

sample sequence Xn and the K orthogonal tapers produces K different Eigen spectrums that are determined 

as: 
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Yk(fi) = ∑Ht
k(N,W)Xte

−2jπft                                        

N−1

t=0

 (1) 

  

where fi are frequency bins and k=0; 1; . . . ; K-1. 
 

 

 
 

Figure 1. Multi-taper system model 
 

 

According to Thomson equation [18], the estimated energy, which exhibits the least variance  

and sidelobe leakage, is obtained by averaging all of these sequences by their weighting Eigen values as: 
 

SMTM(fi) =
∑ λk(N,W)Yk(fi)

2K−1
K=0

∑ λk(N,W)
K−1
K=0

 (2) 

 

which can be written as: 
 

SMTM(fi) = ∑ ak  (N,W)|Yk(fi)|
2                                  

K −1

k=0

 (3) 

 

where the weights ak are defined as: 
 

ak =
λk

 ∑ λk (N,W)
K −1
k=0

                                                            (4) 

 

The energy detection method, on the other hand, gives the power spectrum density (PSD)  estimation as: 
 

SED(fi) =
1

N
 ∑|Xte

−2jπft |
2
 

N−1

t=0

   (5) 

            

Following the hypothesis model declared in (6) to (9), the MTM detector could be compared with other 

systems. 
  

Y(t) = n(t),                               0 < 𝑡 ≤ 𝑇 ∶ H0 (6) 
  

Y(t) = S(t) + n(t),                  0 < 𝑡 ≤ 𝑇 ∶ H1 (7) 
  

Pf = Pr(ε > 𝛾)H0                                                                      (8) 
  

Pd = Pr(ε ≥ γ)H1 (9) 
 

Where Y(t) is the received signal, S(t) is the transmitted signal, n(t) is white noise, ε is the test statistic and γ 

is the threshold voltage. H0 denotes that primary user is absent while it is actually present, and H1 denotes 

that primary user is existing. 
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Wn
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Wn
2 

N-FFT 
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λ1(N, W)Y1(fi)
2

∑ λk(N, W)K−1
K=0

 

λ2(N, W)Y2(fi)
2

∑ λk(N, W)K−1
K=0
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2
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In the proposed paradigm, the power distribution of the received signal is approximated to normal 

distribution at higher values of N. According to the Neyman-Pearson criterion [23], Pd and Pf are expressed as: 
 

 Pd = Q(
γ − μ/H1

√σ2/H1
) (10) 

  

 Pf = Q(
γ − μ/H0

√σ2/H0
) (11) 

 

where µ/H1 and σ2/H1 are the mean and the variance of the received signal power under H1 hypothesis, 

respectively. µ/H0 and σ2/H0 are the mean and the variance of the received signal power under H0  

hypothesis, respectively. 

Using statistical tools for independent random variables, we calculate the mean and the variance 

considering the MTM concepts from the beginning. Since we have a number K of independent random 

variables, the estimated density of spectrum, using K tapers, is a summation of Eigen-spectrum  

with weights λk. 
 

E[S̃Estimated   (f)] = ∑ ai S̃i (f)                                 

K −1

i=0

 (12) 

 

where S̃i(f) = ∑ |FFT(Signal ᵡ Taperi)|
2K−1

i=0 . The  variance is calculated as: 
 

Variance = ∑ai 
2 Var[S̃i(f)] + 2 ∑ aiajCov[S̃i(f)S̃j(f)]

k

i&𝑗=0

                

K−1

i=0

 (13) 

 

where covariance (Cov) for i ≠ j is calculated by: 
 

Cov[S̃i(f)S̃j(f)] = ρσiσj                                                  (14) 

 

where ρ is the correlation coefficient. For H0 hypothesis where noise only exists, the mean of MTM 

(µMTM/H0) and the variance σ2
MTM can be calculated as:   

 

μMTM\H0 = (
λ1
∑k λk

) E[S̃(f)1] + (
λ2
∑k λk

) E[S̃(f)2] ……… .+ (
λK
∑k λk

) E[S̃(f)K] 

= (
λ1
∑k λk

) σw
2 + (

λ2
∑k λk

) σw
2 ……… .+ (

λK
∑k λk

) σw
2  

       = (
σw
2

∑k λk
) (λ1 + λ2……… .+λk ) = σw

2              

 

(15) 

 σMTM
2 /H0 = (

λ1   
2

(∑k λk)
2
) ᵡ (

2σw
4

N
) + (

λ2   
2

(∑k λk)
2
) ᵡ (

2σw
4

N
)……… .+(

λk   
2

(∑k λk)
2
) ᵡ (

2σw
4

N
)

+ 2ρ {[(
λ1λ2

(∑k λk)
2
) ᵡ (

2σw
4

N
)] + [(

λ1λ3
(∑k λk)

2
) ᵡ (

2σw
4

N
)] +⋯

+ [(
λ1λk

(∑k λk)
2
) ᵡ (

2σw
4

N
)] + [(

λ2λ3
(∑k λk)

2
) ᵡ (

2σw
4

N
)]

+ ⋯ .+ [(
λ2λk

(∑k λk)
2
) ᵡ (

2σw
4

N
)] + ⋯ .+ [(

λkλk−1
(∑k λk)

2
) ᵡ (

2σw
4

N
)]}  

 

 

= (
2σw

4

(∑k λk)
2N
) ᵡ (λ1   

2 + λ2  
2 ………+ λK   

2 )

+    [(
2ρ ∗ 2σw

4

(∑k λk)
2N
) ᵡ (λ1λ2 + λ1λ3…… . . +λ1λk… .+λk−1λk)] 

(16) 
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For independent uncorrelated tapers with ρ=0, and for first higher order tapers where power concentration 

≈1. 
 

λ1   
2 + λ2    

2 +⋯+ λK   
2

(∑k λk)
2

≃
1

K
                                                (17) 

  

and 
   

 

σMTM
2  \H0 = (

2σw
4

NK
)                                                      (18) 

 

For hypothesis H1 where signal and noise exist: 
 

μMTM\H1 = (
λ1
∑k λk

) E[S̃(f)1] + (
λ2
∑k λk

) E[S̃(f)2]……… .+ (
λK
∑k λk

) E[S̃(f)K] 

= (
λ1
∑k λk

) (Es + σw
2 ) + (

λ2
∑k λk

) (Es + σw
2 ) …+ (

λK
∑k λk

) (Es + σw
2 ) 

= (
(Es + σw

2 )

∑k λk
) (λ1 + λ2……… .+λk ) = (Es +w

2 ) 

(19) 

 

and variance, 
 

σMTM
2 \H1 = ( 

2σw
4 (SNR + 1)2

(∑k λk)
2N

)   ᵡ (λ1   
2 + λ2  

2 ………+ λK   
2 ) 

+[(
2ρᵡ2σw

4 (SNR + 1)2

(∑k λk)
2N

) ᵡ (λ1λ2 + λ1λ3…… . . +λ1λk………+ λk−1λk)] 

(20) 

 

For independent uncorrelated Tapers, ρ=0, and for first higher order tapers where power concentration ≈1. 
 

σMTM
2 \H1 = ( 

2σw
4 (SNR + 1)2

NK
)                                                                (21) 

 

According to the Neyman-Pearson criteria and using (10) and (11), the Pd and Pf can be obtained as:  
 

Pd
MTM = Q

(

 
γ − σw

2  (SNR + 1)   

√(
2σw

4 (SNR + 1)2

NK
)    
)

                                                      (22) 

 

Pf
MTM = Q

(

 
γ − σw

2    

√(
2σw

4

NK
)    
)

  (23) 

  

γ = Q−1( Pf
MTM) ᵡ√(

2σw
4

NK
)    +  σw

2  (24) 

 

On the other hand the Pd and Pf  for energy detection can be written as:  
 

Pd 
En = Q

(

 
γ − (Es + σw

2 )   

√(
2σw

4 (SNR + 1)2

N
)    
)

                                                       (25) 

  

Pf 
En = Q

(

 
γ − σw

2    

√(
2σw

4

N
)    
)

                                                                             (26) 
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3. THE TEST STATISTIC AND THE PROPOSED CORRECTION FACTOR 

The test statistic (ε) of MTM, where the sensing decision is executed by comparing it with 

threshold, is calculated by two equivalent methods. In the first method, the test statistic is estimated from  

the mean of spectrum sensing given by (2). 
 

𝑇ℎ𝑒 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐(𝜀) = 𝑚𝑒𝑎𝑛(𝑆𝑀𝑇𝑀  (𝑓𝑖))                                 (27) 
 

And in the second method, the MATLAB [pxx, w] function is used and the test statistic is proposed as: 
 

𝑇ℎ𝑒 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐(𝜀) = 𝑚𝑒𝑎𝑛(𝜋 ᵡ Pxx) (28) 
 

The sensing decision which is done according to the decision rule given in (8) and (9) is very 

sensitive for any small error in the test statistic (ε). This error leads to a deviation of simulation results  

from the theoretical one as shown in Figure 2 for different simulation parameters. The figure depicts  

the mean square error (MSE) deviation error between the theoretical and simulated Pd.  
 
 

 
 

Figure 2. MSE deviation error between the theoretical and simulated Pd for N=512, SNR=-15 dB with K=2,5 
 

 

From Figure 2, it is clear that the sign and the value of the deviation error depend on the simulation 

parameters. For example, it increases with the increase of K and it may be negative or positive for some 

ranges of Pf. Also, it increases (with negative sign) as Pf decreases below about "0.2" because the values of Pd 

are low in this region. After Pf becomes greater than about "0.2", it increases slightly and then decreases 

slowly as Pf increases till being equal to about zero at Pf=1. The same analysis is done for the remaining 

parameters: SNR, K, and N. From the above observations and analysis, an empirical correction factor (Cf) is 

proposed as given in (29) to reduce this deviation error.  
 

𝐶𝑓 = 1 + {𝐴 + 𝐵 + 𝐶} (29) 
 

where, 𝐴 = {[0.03  ᵡ K  ᵡ (Pf − 0.2) + 0.06 ᵡ Pf  ᵡ (1 − Pf) + 1.61  ᵡ SNR − 0.049 ] ᵡ (1 − 1/K)} 
 𝐵 = {(1.2e − 5 ᵡ N )ᵡ(1 − Pf)ᵡ(1 − 15e − 4/SNR)} 
 𝐶 = {[0.175 ᵡ SNR + 0.025 ᵡ Pf ᵡ (1.4 ᵡ SNR − 1) + 5e − 7 ᵡ Pf ᵡ (1 + 1.5e − 3 ᵡ N) + 5e − 3] 

 ᵡ (1 − 5/K)} 
To reduce the deviation error, the test statistic must be multiplied by "Cf" before making the decision. 

Figure 3 displays the deviation error between the theoretical and simulated Pd. It is obvious that  

the deviation error has been addressed and the correction factor (Cf) is working well for a wide range  

of simulation parameters except at very low values of Pf (Pf >0.05). Figure 4 shows "Cf-1" %, which is 

considered as the percentage deviation error of the simulated Test Statistic (ε), versus Pf.  

Figures 3 and 4, illustrate the impact of including the correction factor. From Figure 4, it is obvious 

that a short deviation error (Cf -1) % in the simulated test Statistic (ε) results in a relatively large one between 

the theoretical and simulated Pd. For example, for K=5, at Pf=0.5, the deviation error in the simulated (ε)  

is about 5%. From Figure 3, it results in about 22% deviation error in Pd prediction. Significantly,  

after introducing the correction factor to the simulated test statistic (ε), the deviation error reduced to zero as 

depicted in Figure 3. The effectiveness of proposed correction factor is verified in the next section.  
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Figure 3. Deviation error % between the 

theoretical and simulated Pd with "Cf" for 

N=512, SNR=-15 dB with K=2, 5 

 Figure 4. Deviation error % of the simulated test 

statistic (ε) for N=512, SNR=-15 dB with K=2, 5 

 

 

4. SIMULATION DISCUSSION 

This section presents and discusses the results obtained from intensive computer simulations  

and compares them with the theoretical results obtained from the proposed analytical study.  

These comparisons have included many important aspects and most of the factors that affect the accuracy of  

the suggested detection methodology in CR networks as listed in Table 1. Also, the accuracy and verification 

of the proposed theoretical study were confirmed by several comparisons with one of the previous but 

reliable studies [20]. The efficiency of the proposed sensing methodology has been ascertained by comparing 

it with the energy detection method [24, 25] and ensuring that the obtained results are identical to  

the previous results which are reported in the paper. The mean and variance of the proposed analytical 

formulas for two hypotheses H0 and H1 have been verified by comparing the final computer-simulated results 

with the analytical results under different simulation parameters as depicted in Figures 5 and 6. It is enough 

to verify the mean and variance of MTM technique under the hypothesis H1. 
 

 

Table 1. Simulation parameters 
Sample (N) SNR (dB) Taper(K) Pf Figure 

512 & 256 [-15 to 15] 5 & 2 --- 5 

512 & 256 [-20 to 0] 5 & 2 --- 6 

512 & 256 -10 [2 to 20] --- 7 
512 -10 & -15 5 & 2 [0 to 1] 8 & 11 & 12 

512 [-25 to 0] 5 & 2 0.1 9 

[500 to 5000] -15 5 & 2 0.1 10 & 13 

 

 

 

 

 

   

Figure 5. Verification of proposed analytical mean 

formula under hypothesis H1 with different 

simulation parameters 

 Figure 6. Verification of proposed analytical 

variance formula under hypothesis H1  

with different simulation parameters 
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 Figure 5 shows the theoretical mean of MTM technique under hypothesis H1, which is given  

by (19), along with the simulated one, which is computed according to the first method, versus the signal-to-

noise ratio. Obviously, the mean increases as SNR increases, which achieves he general concept of  

the estimator. Figure 6 shows the theoretical variance of MTM technique under hypothesis H1, given by (21), 

along with the simulated one computed according to the first method, versus SNR. Figure 7 depicts  

the theoretical variance of MTM technique under hypothesis H1, along with the simulated one, versus  

the number of tapers "K" under different simulation conditions. The Figure shows that the proposed formula 

obeys the MTM theoretical theory, where, the variance is a decreasing function with increasing K. 
 

 

 
 

Figure 7. Verification of proposed analytical variance formula under hypothesis H1 versus tapers (K) 
 
 

From the above three Figures 5, 6, and 7, it is obvious that the proposed analytical formulas for  

the mean and the variance under hypothesis H1 are accurate and they are valid to represent the real MTM 

system under different simulation conditions. Consequently, the proposed analytical formulas under hypothesis 

H0 are accurate and they are valid to represent the real MTM system under different simulation conditions. 

The Results are not similar to the mean and variance mentioned in [22] where the variance does not change 

with K and mean changes with K. This means that the mean and variance contradict the concept of MTM.  

The receiver operating characteristics (ROC) curve considers the key measurement metric that  

is used to analyze and evaluate the overall detection rate of spectrum sensing techniques. Therefore, it is used 

to verify the proposed analytical formulas of Pd, Pf, and γ as a first verification scenario. Figure 8 illustrates  

the accuracy of the relationship between probability of false alarm and probability of detection which has 

been verified by comparing theoretical ROC curves determined by (22) and (23) with that one derived 

directly from computer-generated data using (10) and (11), i.e., according to the first method.  
 

 

 
 

Figure 8. Probability of detection versus probability of false alarm (ROC curves) for MTM and ED  

with N=512, and different values for SNR and K 
 

 

Under different simulation parameters such as N=512 and different values for SNR and K,  

the proposed paradigm was simulated. From Figure 8, the ROC which was generated from the proposed 

theoretical formulas for the probability of detection (Pd
MTM) and the probability of false alarm (Pf

MTM),  
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is identical to the one generated from the simulation model under a different set of false-alarm and simulation 

parameters. The results assert that the precision of the proposed theoretical formulas for the proposed 

analytical formulas of Pd, Pf, and γ match well under all settings of false-alarm rate and other  

system parameters. 

From Figure 8, it is obviously shown that, the probability of detection for MTM is almost 99% with 

a probability of false alarm about 10% for K=5 and SNR=-10dB. In the same figure, the detection rate  

of MTM is compared with Energy detection reported in [24]. We find that MTM exceeds Energy detection 

by about 40% and 20% at Pf = 0.1 for K = 5 and K = 2, respectively, using the same parameters. 

The effect of number of tapers (K) on the relation between Pd and SNR is verified by plotting  

the values of Pd for both theoretical and simulation results versus different SNR values with different number 

of tapers K, as shown in Figure 9. From Figure 9, it is obvious that the performance of detection is enhanced 

and the detector becomes more reliable with increasing "K" under the same SNR, and Pf. For example,  

at Pf=0.1 and SNR=-15dB, the Pd equals about 44 % at K=5 while it equals about 29% at K=2.  

Also, it is noted that the proposed theoretical curve matches well with that generated by simulation under all 

settings of SNR and K. The proposed paradigm verification and performance are tested for a wide range of N 

(500-5000) with different K (2, 5), at Pf=0.1 and SNR=-15 dB and compared with ED, as shown  

in Figure 10. 
 

 

 

 

 
 

Figure 9. Probability of detection versus SNR  

at Pf=0. 1and N=512 for different tapers K  

  

Figure 10. Probability of detection versus N  

at Pf=0. 1and SNR=-15dB for different number 

of tapers K  
 

 

From Figure 10, it is obvious that the detection rate is enhanced and the detector becomes more 

reliable with increasing "N" under the same SNR, and Pf. Also, For N=5000, the maximum achievable Pd  

for K=5 is "0.986", for K=2 is "0.819", and for ED is"0.61". The number of samples which is necessary to 

achieve Pd=0.819 for K=5 is "1975" obeys (30).  

  

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑁𝑓𝑜𝑟𝐾=𝐾1 =
𝐾2

𝐾1
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑁𝑓𝑜𝑟𝐾=𝐾2    (30) 

 

Also, the samples size which is desired to obtain Pd=0.61 for K=5 is "1000" obeys (31). 

  

𝑁𝑀𝑖𝑛
𝐸𝐷

𝑁𝑀𝑖𝑛
𝑀𝑇𝑀 = 𝐾                                                                                              (31) 

 

According to the second approach, in which the test statistic must be multiplied by "Cf" before 

making the decision to reduce the deviation error between the theoretical and simulation results.  

The proposed correction factor accuracy and reliability are verified for a wide range of Pf with K=2, 5, 

SNR=-15, -10 dB, and N=512, as shown in Figure 11. In the same Figure, the detection performance  

of MTM is compared with Energy detection. The same results illustrated in Figure 8 are obtained.  

Moreover, the proposed paradigm is compared with the model reported in [20]. As depicted  

in Figure 12, the detection rate of the proposed paradigm achieves the same rate of the paradigm reported  

in [20] under different values of false-alarm rate, especially, in the low and moderate SNR ranges. It is worth 

mentioned that the proposed paradigm achieves the same detection performance as the model in [20],  
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but is less computational demanding. Also in Figure 13, the required sample size for the proposed paradigm  

and the paradigm reported in [20] are simulated as a function of Tapers (K). It is clear that the proposed 

MTM model requires the same sample size as the model referenced in [20] to achieve the same detection 

performance as the model. 

 

 

 

 

 
 

Figure 11. ROC curves for different simulation 

parameters generating using second method with 

the statistics are corrected using "Cf" at N=512 

  

Figure 12. Comparison between ROC curves 

generated using the proposed paradigm and  

the paradigm reported in [20] with N=512 

 

 

 
 

Figure 13. Performance comparison of the proposed paradigm with the paradigm reported in [20]  

with respect to the number of samples with Pf=0.1 

 

 

5. CONCLUSION AND FUTURE WORK 

In this paper, a simple and computationally efficient analytical spectrum sensing method to discover 

the radio spectrum in CR is developed. MTM detector surpasses the detection rate of the energy detector by 

40% given a fixed probability of false alarm 10%, N=512, SNR=-15dB, and K=5. Based on this work, some 

perspectives for future work are suggested. There is a need to investigate the practical implementation of the 

proposed analytical technique on a real-time test-bed, to determine correlation between simulation and 

implementation results. 
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