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 This paper presents visual analytics of 3D LiDAR point clouds in robotics 

operating system. In this study, experiment on simultaneous localization and 

mapping (SLAM) using point cloud data derived from the light detection and 

ranging (LiDAR) technology is conducted. We argue that one of the 

weaknesses of the SLAM algorithm is in the localization process of the 

landmarks. Existing algorithms such as grid mapping and monte carlo have 

limitations in dealing with 3D environment data that have led to less accurate 

estimation. Therefore, this research proposes the SLAM algorithm based on 

real-time appearance-based (RTAB) and makes use of the red green blue 

(RGB) camera for visualisation. The algorithm was tested by using the map 

data that was collected and simulated on the robot operating system (ROS) in 

Linux environment. We present the results and demonstrates that the map 

produced by RTAB is better compared to its counterparts. In addition, the 

probability for the estimated location is improved which allows for better 

vehicle maneuverability. 
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1. INTRODUCTION 

Simultaneous localization and mapping (SLAM) of an autonomous vehicle is a process of locating 

and mapping the location of a moving vehicle in a dynamic environment. Localization and mapping process 

work together similar to the “chicken and egg” analogy. Localization of an autonomous vehicle (AV) needs  

a map of the environment in order to locate itself. The same goes to map process to produce a map  

of the surroundings where it requires the current state and location of the vehicle to build the map  

of the environment. Technically, AV is categorized on a scale from zero to five, with zero meaning  

no autonomy and five signifying complete autonomy [1]. 

The AV technology is important, gives many benefits such as lower the crashing probability,  

and would be very useful for smart city communities. Conceptually, autonomous navigation of a driverless 

vehicle consists of several questions such as “where am I going?”, “where am I currently?” and “how do I get 

there?” [2]. Self-localization is an important feature in the navigation of an autonomous vehicle. Navigation 

is known as a process of determining a suitable and safe path between the start point and the destination point 

where the mobile robot will move [3]. Besides that, it also can be defined as the ability to move in any 

particular environment [3]. The question of, “where am I currently?” is very important as it determines  
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the precise current state of the autonomous vehicle which can be achieved via a sensor. Light detection  

and ranging (LiDAR) sensor such as Velodyne VLP-16 PUCK was designed to scan the surrounding 

environment to construct the map and locate its current location. Based on [4], it is a stable sensor  

and reliable to be used because it can replicate the contour information of the surrounding obstacles. 

Velodyne VLP-16 PUCK emits its laser to scan the surroundings and collect data called point cloud which  

is in a 3-dimension state. LiDAR sensor can be integrated with the inertial measurement unit (IMU)  

for a precise detection and localization. It provides attitude or orientation, and velocity to an AV [5].   

SLAM is the key feature in making a vehicle autonomous and navigates in an unknown 

environment. In SLAM, there are many algorithms that have been used such as the Kalman filter  

and Particle filter. Kalman filter algorithm is applied based on the calculation of the mean and variance  

to estimate a vehicle’s pose. As for the Particle filter, it converts the SLAM problem into path and landmark 

estimation [6]. Particle filter algorithm consists of two popular methods namely the Monte Carlo  

and Rao-Blackwellized. Monte Carlo uses the Bayesian filtering approximation by drawing samples  

of particles as explained in [7]. It is one of the algorithms that is widely used for robot localization. 

According to [8], Monte Carlo algorithm is specialized for target tracking, statistics and computer vision 

literature as well as dynamic probabilistic networks and it works well based on fast sampling technology.  

As the robot moves and sense, Monte Carlo uses resampling method to estimate the distribution.  

When comparing Monte Carlo to other filter algorithm such as Kalman filter based, the advantage of Monte 

Carlo algorithm is that Monte Carlo able to express multi-modal distributions which resulting the robot can 

be localized globally. However, Monte Carlo only can deal with 2D data. Rao-Blackwellized method uses the 

extended Kalman filter and the unscented Kalman filter algorithm to improve further the estimation accuracy.  

According to [9], it is a real complex problem for an autonomous vehicle to move from one place  

to another in urban areas like cities because of too many dynamic objects like pedestrians. In terms  

of the system algorithm for an autonomous car to work, the SLAM of a mobile robot has problems to locate 

itself. It also has problems to move based on the estimated prior location and to build map simultaneously  

as they move. SLAM algorithm that has been presently researched such as the Kalman filter algorithm can 

only be applied to the non-linear Gaussian distribution model, which can cause high computational time, 

linearization error and which can lead to non-accurate estimation. In addition, according to [10], extended 

Kalman filter algorithm can lead to poor representations of nonlinear function. This can cause the filter  

to be divergent. Some related work has shown that Kalman filter is not good in terms of accuracy for state 

vector estimation and also to measure noises in environments. As supported in [11], it is obviously known 

that Particle filter is better than Kalman filter when it comes to produce more precise and robust estimation 

because Kalman filter requires more extensive calculations. As for the graph-based SLAM, the main idea  

is to organize information in a graph and give solutions to SLAM problems as a global graph optimization.  

In addition, there is also the implementation of graph-based SLAM using visual methods such as using red 

green blue-depth (RGB-D) type camera. This visual SLAM algorithm is called the RTAB-Map algorithm.  

It uses graph optimization technique together with 3D map data that is achieved using the RGB-D camera  

to further improve the localization estimation accuracy. For localization using RTAB-Map algorithm, it uses 

Bayesian filtering that records closure-loop assumptions by estimating probability of forming closure-loop. 

The process of localization by using Bayesian filtering is really important, as Bayesian has the strongest 

foundation and the oldest approach [12]. Information fusing using Bayesian fusion is found to be more 

straightforward to be used for indoor and outdoor environments. 

This paper presents a simulation of visual analytics of 3D LiDAR point clouds in robotics operating 

system. The aim of this paper is to experiment a few standard SLAM algorithms for mapping and localization 

using the robotic operating system (ROS) during the localization and mapping processes. The weakness  

of the SLAM algorithm is in the localization process of the landmarks. There are limitations in existing 

algorithms such as grid mapping and Monte Carlo when the data is in 3D environment which will lead  

to less accurate estimations. Thus, this paper proposes the SLAM algorithm based on real-time  

appearance-based (RTAB) and makes use of red green blue (RGB) camera for visualization. The remainder 

of this paper is organized as follows: Section 2 describes the past studies and presents the commonly used 

algorithm in SLAM. Section 3 presents the methodology while section 4 discusses the results and findings of 

the study. Finally, section 5 concludes the paper. 

 

 

2. BACKGROUND STUDY 

Traditionally, the advanced driver-assistance systems (ADAS) have been implemented to navigate 

an autonomous vehicle. However, over several past years, SLAM has shown its improvement over ADAS, 

particularly in detecting and tracking the moving objects, as described in [13]. For SLAM to navigate 

autonomously, an AV needs to know the precise location of its current state. This is known as localization or 
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in other words as a local state, which refers to the current location of an autonomous car as it navigates to 

designated places. According to Wolcott et al., [14], localization has to be within a priori map  

in order to get a precise location. They further added that metadata is embedded into a priori map  

to transform the complication perception task into localization problems rather than using vehicle’s sensors  

to detect lane, markings and traffic sign clearly. According to Bresson et al., [15], the global navigation 

satellite system (GNSS) that was introduced as an alternative, cannot provide sufficient data for 

the autonomous vehicle to detect the location. This arises when the autonomous vehicle goes through  

an urban area with high buildings, where the infrastructure can block direct signals and generate multi-paths 

interference. Furthermore, in an urban area, there will be traffic congestion where these can also be an 

issue [16]. These two situations worsen the autonomous navigation in the urban and packed areas. 

 

2.1.  Real-time appearance-based algorithm 

Real-time appearance-based (RTAB) SLAM is one of the algorithms that uses the basics of graph 

SLAM in carrying out the process of mapping and localization. According to [17], the advantage of graph 

SLAM is it lies within the structure of the matrix that stores the pose data of the vehicle together  

with the landmarks within the map. This information can visualize the entire trajectory of the vehicle.  

As explained in [18], the graph SLAM works by generating landmarks from raw radar signals  

and constructing a map once it achieves high accuracy in both localization and mapping. RTAB approach  

is one of the efficient methods to do SLAM because it creates a 2D occupancy grid and 3D octo-map that  

and has been applied in many past studies [19, 20].  

In some researches, occupancy grid maps are built in Bayesian framework and it detected the mobile 

objects by comparing the accumulated occupancy grid map and local map built by current data [21].  

The advantage of using graph SLAM is that the map is optimized and stored in an R-tree data structure in 

order to maintain its flexibility [18]. According to [19], RTAB-Map algorithm is designed to give solutions 

that are based on localization and graph composition. RTAB algorithm basically combines two algorithms 

which are loop closure detection and graph optimization. At the same time, it provides memory management 

to satisfy real-time requirements and allowing multi-session mapping to associate different maps. This model 

uses RGB images in order to generate locations related to those images. The images will then be compared to 

the previously visited locations for loop-closure detection for localization. 

Based on one of the research on image processing for paddy in [22], pictures of paddy leaves taken 

from a UAV and with lens correction technique contained RGB images, successfully produced weighted 

accuracy of about 95.04%, which shows that detection using RGB image can generate accurate and detailed 

pictures as applied in this paper. This image will be processed by using image processing algorithm to enable 

its features to be extracted. According to Mutalib et al [22], image pre-processing that is frequently used  

is the conversion from RGB to Grayscale image. In addition, Kahar et al. [23], in their research on detection 

for paddy diseases, also included reading and extracting the RGB colour from images of paddy leaves  

to be converted into grayscale. At this stage, it is important to read the right colour as it determines the stages  

of the paddy diseases. The characteristics of this data are high dimensional, semistructured and also spatial 

patterns [24]. The use of RGB colour in RTAB algorithm provides a richer representation of the surrounding 

during the localization process. 

As a loop-closure detection can be detected inside a map, detection can also be found between 

different maps due to the multi-session properties of the system. After a successful loop-closure detection, 

3D transformation is applied to match the images. When the loop closure has been stored, the Bayesian filter 

will be updated by estimating the probability of performing loop closure. According to [25], Bayes rule is the 

best tool to perform the estimation because in solving SLAM problem, it is necessary to apply estimation 

theory to develop maps from noisy information. RTAB SLAM is a graph-based SLAM system that includes 

locations as nodes. The location will be applied during loop closure detection and then the map graph is 

optimized in order to decrease odometry errors. The steps in the RTAB algorithm is described as in [19]. 

 

2.2.  3D and 2D mappings 

In the SLAM algorithm, the common problem is the localization of the landmark. For example,  

the existing algorithms such as the grid mapping and Monte Carlo localizations have limitations in dealing 

with 3D environment data which could lead to non-accurate estimations. These algorithms can only provide 

2D maps for localization. The problem when using a 2D map is that the data is insufficient for 

the localization process as the vehicle moves around various places. Image data for a 2D map might drift 

away as the vehicle turns around and creates redundancy of data. Compared to a 2D map, a 3D map data  

is more preferable for localization. As in this research, the method used is the RTAB algorithm which 

includes both 2D and 3D maps. Obviously, with the help of both 2D and 3D maps, localizations made can be 

more precise compared to using only a 2D map. 
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As explained in [9], a 3D map is purposed to give a solution for the localization to be combined  

with a 2D map. A 3D map can help improve localizations as it contains many features such as point cloud 

data, noise, depth information of the image and also the colour intensity. A 2D map does not possess these 

features except that is require smaller storage. Moreover, 3D maps have more flexible views and good 

dimensions compared to 2D maps. This information is important and contributes to better localizations.  

In addition, RTAB algorithm produces a 3D map by using RGB-Depth camera to collect data images  

from the surroundings. Generally, RTAB algorithm is suitable for SLAM since it generates 2D and 3D maps 

in multiple scenarios. With the help of 2D and 3D maps, it will give more accurate data for the localization 

process of the mobile robot since the localization will depend on the surrounding map to estimate its current 

and next state. As RTAB algorithm has richer information it is better than grid mapping and hector SLAM, 

they can only generate 2D maps and process data from 2D maps in order to do localization. 

Table 1 shows the comparison of features in RTAB-Map, grid mapping and hector SLAM. As can 

be seen in Table 1, RTAB-Map has richer features compared to grid mapping and hector SLAM. RTAB  

is one of the SLAMS visual and it uses RGB-Depth camera to collect data images from the surroundings.  

By having an RGB-Depth camera, RTAB can extract the depth element from the images. The depth data is  

so helpful to provide accurate information. Compared to grid mapping and hector SLAM, only RTAB-Map 

algorithm uses the depth data. The depth data is collected by the kinect sensor. For odometry; refers to the 

input that can be used to help the SLAM approach compute the motion estimation which is known  

as localization. Moreover, RTAB-Map can produce both 3D octo-map and 2D occupancy grid map  

which use point cloud data to map the surroundings. Unlike grid mapping, and hector SLAM, they can only 

produce 2D occupancy grid map. 

 

 

Table 1. Comparison between RTAB-Map, grid mapping, and hector SLAM 
Features RTAB-Map Grid Mapping Hector SLAM 

Type of Sensor Kinect depth Laser Scanner 2D-LiDAR 

Degree of Freedom 6 3 6 
Class Stereo Laser Laser 

Data RGB-D Scan Scan 

Depth √   

2D-LiDAR √ √ √ 

3D-LiDAR √   

Odometry √ √  
2D Map √ √ √ 

3D Map √   

Point Cloud √   

 

 

3. METHODOLOGY 

The data collection was carried out by using a mobile robot equipped with Velodyne VLP-16, high 

quality sensor designed for obstacle detection and navigation of autonomous vehicles. It operates  

by measuring distance with 16 layers of lasers, which spins around providing a complete 360° horizontal 

field of view. Figure 1 shows the system architecture for the RTAB-Map algorithm. This architecture 

comprises of 3 sections which is input, process and output. It starts with the input section where the data  

of the environment are scanned and collected using laser sensor VLP-16.  

These data comprise of two types that is namely from Kinect sensor and laser sensor which will be 

extracted and synchronized. Next, the data is then matched and stored into database by using the concept of 

memory management. Memory management is considered as a database that consists of two type of memory, 

short-term memory (STM) and long-term memory (LTM). Short Term memory is like an entry point that 

works by adding new images when the data images received during the scanning process. While for  

long-term memory, it stores all of the data images of the surrounding that have been scanned.  

The experiments have been conducted using robotic operating systems (ROS) simulations. The output for 

this process is the map and the localization position for navigation. 

 

 

4. RESULTS AND FINDINGS 

This section explains the results and findings from creating maps and localizing the robot position. 

The results of mapping using RTAB-Map are discussed based on two versions, which are in 2D and 3D 

maps. The 2D map is based on the occupancy grid map while the 3D map is based on point cloud. 
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Figure 1. System architecture 

 

 

4.1.  Mapping results 

The results of mapping using RTAB algorithm in simulation generated 3D map consist of depth data 

from kinect sensor and known as depth graphical view of the environment. Figure 2 and Figure 3 show  

the 3D map that has been created in simulation for both environments namely living room and tv room.  

As can be seen in the figure, mapping results for the 3D map seems so detailed and real akin to the real 

environment. These 3D maps consist of many point cloud data. The generated 3D map can be seen not just  

of the top view of the plan, but from any angle. In addition, the 3D map also has colours of the environment. 

 

 

  
  

Figure 2. 3D map of living room Figure 3. 3D map of tv room 

 

 

Based on the created map, tv room mapping generated good results. For the first environment, living 

room, the map generated was poorer because of less features in the environment. The robot was not able to 

generate a good 3D map due to the lack of features which are needed for loop closure detection. When the 

robot scanned the environment in living room, less features made the robot failed to do loop closure to match 

the pictures of environment since it scanned an empty surrounding. However, in the second environment, a 

few more features were added such as cylinders, cones and tables in order to get better results. 

 

4.2.  RTAB SLAM performance 

For the first room, living room in Figure 2, the turtlebot has been pointed to one goal. In this room, 

the turtlebot will pass through the obstacles. There were 5 experiments conducted as listed in the following 

table. The distance for each experiment was fixed at 3 meters each. Figure 4 illustrates the movement  
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of the turtlebot from point A to point B, with a 3 meters distance. Navigation goal is point B. As shown  

in Figure 4, the yellow dotted line represents the movements of the robot from point A to point B. 

 

 

 
 

Figure 4. Experiment with RTAB algorithm 

 

 

From the dotted line, it showed that the robot did not move in a straight line because of the obstacles 

between point A and point B. The robot was able to avoid the obstacles and move as indicated by the yellow 

dotted line. As for the time taken for the robot to reach its destination, the terminal output the time in Unix 

time stamp. This value was converted into ISO format to note the real time taken. The conversion of time 

from Unix time stamps to ISO format was done online. The time taken for experiment 1 was 15.636 seconds. 

Next, the second experiment was also carried out by passing through the obstacles similar to the first 

experiment but at different points. The distance between points C to point D was set at 3 meters.  

From the experiment, when the robot detected an obstacle, it tried to find another path and tried to locate 

itself while scanning the environment. The experiment results have been tabulated in the following Table 2 

that shows the time taken from the tests conducted for both rooms, which have been gathered and represented 

as RTAB SLAM performance. 

 

 

Table 2. RTAB SLAM performance 

Experiment 
Time taken to reach the goal 

Points Living room (seconds) TV room (seconds) 

1 A to B 15.636 10.107 
2 C to D 36.890 7.458 

3 E to F 17.085 7.548 

4 G to H 63.240 8.447 
5 I to J 14.179 7.160 

Total 147.030s 40.720 

 

 

Room with less total time taken is considered as a good environment for the RTAB. As shown  

in the table, total time taken for the turtlebot to reach its goal in living room was 147.030 seconds, while  

for tv room it was 40.720 seconds. There was a slightly different time recorded between2 the two above.  

In living room, the turtlebot passed through an obstacle from one point to another point, while in tv room, 

there were not many obstacles and the turtlebot did not pass through any obstacle, allowing it to move  

in a straight line. 

From the results, the conclusion is tv room is the best environment compared to living room as the 

robot took the least time to navigate to the location at approximately 40 seconds. The RTAB algorithm 

performed its best to localize the robot when there were no obstacles around it as it moved to the goal.  

When there were no obstacles, the robot could locate itself precisely, and this helped the robot to process  

the information it collected from its surroundings in lesser time as to where to navigate within the map. Thus, 

it reached its goal faster without the need to avoid any obstacles. As we can see, the way the robot navigated 

itself in living room, it had to pass through the obstacles in front of it. As the robot reached the obstacle,  

it slowed down to ‘decide’ as to which way it needed to go, either to the left or right. In order to decide which 

way to turn, it needed to scan the environment for others possible path to go through. During the scanning 

process, the robot rotated a few times. Here, obviously we could see that when there were obstacles, it took 

time for the robot to detect and decide which path to use so as to avoid the obstacles in front of it. 
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4.3.  Comparison between RTAB and AMCL localization 

This subsection presents the comparison between RTAB and AMCL algorithms, in which five 

experiments were conducted, involving 5 different start-end points, experiment using AMCL algorithm 

shown in Figure 5. To be fair, a distance of 3 meters was fixed for each experiment. Table 3 shows the time 

taken for the turtlebot to reach the goal for both experiments using RTAB and AMCL algorithms.  

The experiments were conducted in tv room. As can be seen in this table, there are big differences in  

the time taken for the robot to reach the goal. For RTAB, the results showed it took approximately  

41 seconds for the three experiments that were carried out. While for the AMCL algorithm, it took almost 

204 seconds for the robot to reach its goal. These results prove that the RTAB algorithm is more successful in 

doing SLAM process as compared to the AMCL algorithm. It also shows that with the help of 3D maps,  

a more precise robot and autonomous vehicle mapping and localization can be produced. To support these 

findings, as explained in [26] that the use of Graph optimization method, which was applied partly  

in the RTAB algorithm, the localization improved with the map being constantly kept up-to-date. This is also 

due to feature selection and data size per map area remaining constant. 
 

 

 
 

Figure 5. Experiment using AMCL algorithm 
 

 

Table 3. Performance comparison between RTAB and AMCL in TV room 

Experiment 
Time taken to reach the goal 

Points Living room (seconds) TV room (seconds) 

1 A to B 10.107 88.214 
2 C to D 7.458 9.218 

3 E to F 7.548 60.275 

4 
G to 

H 
8.447 30.169 

5 I to J 7.160 15.956 

Total 40.720 203.832 

 

 

5. CONCLUSION 

This paper demonstrated the simulation study of SLAM by using a low-cost service robot platform 

which was capable of mapping and localizing in an unknown environment. We have shown that the turtlebot 

was able to localize itself in the map created using Bayes filter in RTAB algorithm and was able to navigate 

to its goal better than the Monte Carlo and Gmapping algorithms. The entire process of navigation was 

visualized using Rviz and was found to be satisfactory since the robot was able to reach the goal point 

successfully. Further studies in this field with other SLAM algorithm and by using real mobile robot would 

be beneficial to many parties as the robotic field is currently highly demanded. 
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