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 Switchgear is a very important component in a power distribution line. 

Failure in switchgear can lead to catastrophic danger and losses. In this 

research, a fault detection system is proposed with the implementation  

of Extreme Learning Machine (ELM). This algorithm is capable to identify 

faults in switchgear by analyzing the sound wave generated. Experiments  

are carried out to investigate the performance of the developed algorithm  

in identifying Corona faults in switchgears. The performances are analyzed 

in time and frequency domains, respectively. In time domain analysis,  

the results show 90.63%, 87.5%, and 87.5% of success rates in 

differentiating the Corona and non-Corona cases in training, validation  

and testing phases respectively. In frequency domain analysis, the results 

show 89.84%, 83.33%, and 87.5% success rates in training, validation and 

testing phases respectively. It can thus be concluded that the developed 

algorithm performed well in identifying Corona faults in switchgears. 
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1. INTRODUCTION 

Switchgear is one of the vital equipment in a power distribution network [1]. In power generating 

system, switchgears act as a mean to isolate and de-energize specific electrical components and buses to 

ensure safety of downstream maintenance work, such as faults clearing, routine maintenance, and equipment 

replacements. They are generally categorized by the insulating medium, such as air or oil, and are typically 

specified into low, medium, and high voltage classes [2]. It is important to keep a close monitoring on  

the condition and performance of operating switchgears. Diagnosis and corrective maintenance onto faulty 

switchgears should be prompt and immediate. A single incident can cause dire effects to the distribution 

network, operational staffs and thousands of end users, which will in turn cause major spikes on customer 

interruption statistics and regulatory perception [3, 4].  

Failures on switchgears are usually caused by gradual degradation of the parts, such as insulators, 

switches and connectors [5]. At early stage, electrical faults such as corona, surface discharge and arcing can 

produce noises that are detectable in the frequency range (20 kHz to 100 kHz) of an ultrasonic detection 

system [6]. Such failures are not easily visible by naked eyes, but it is possible to identify the noise via 

ultrasonic detection systems [7]. The implementation of ultrasound detection systems can provide utility 

companies a new approach to ensure improved reliability and performance of critical electrical assets.  

To date, switchgear faults detection in Malaysia relies heavily on manual random inspection by qualified 
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technical experts [8]. An organized soft computing system with growing database can help to ensure a more 

systematic inspection routine.  

Switchgear failures can generally be categorized into several types, such as arcing, tracking, surface 

discharge and mechanical failure [9]. One of the commonly encountered faults is caused by Corona  

discharge [10]. Corona is the glow or electrical discharge around conductors [11]. Corona starts almost 

silently and occurs when the surrounding air is stressed beyond its ionization point without developing 

flashover [12]. The air between layers of insulation becomes charged when electrical stress exceeds 

the insulation value of the air. When the humidity and moisture in the air or gas exceeded certain values, 

Corona discharge occurs to form Ozone and Nitrogen Oxides [13]. These, when combined with the moisture 

will produce nitric acid, which is destructive to most dielectrics and certain metallic compositions, resulting 

in corrosion [14]. In addition, the high energy in some discharges result in mechanical, electrical and thermal 

damage. Corona will only occur when there are over 1000 Volts. It seeks a path to the ground [15].  

Left uncorrected, Corona activity can be advancing to the surface discharge stage on the insulation board on 

a live part. The carbon deposits and light brown discoloration of the insulation board can then be possibly 

visible by naked eyes by maintenance personnel. Undetected corona can cause further deterioration to  

the insulator, which in turn leads to other failures such as surface discharge and eventually arcing [16]. 

This research aims to explore the implementation of soft computing and ultrasonic inspection 

systems to detect Corona discharge faults at their early stages. This can help the utility companies to take 

necessary corrective measure to prevent further failures, which can in turn lead to catastrophic losses. 

In this paper, a modified recognition algorithm enhanced with Extreme Learning Machine (ELM) mechanism 

is proposed for the detection of corona faults in a switchgear. The major contribution of this research is on  

the development and implementation of the ELM to identify Corona discharge via the sound waves 

generated. The layout of the paper is as follows: Chapter two discusses the modified ELM algorithm and its 

implementation in details. The experimental results and some related discussions are presented in chapter 

three. The final chapter offers a comprehensive conclusion on the research. 

 

 

2. EXTREME LEARNING MACHINE 

Extreme learning machine (ELM) is a competitive machine learning mechanism. It is simple in 

theory and fast in implementation. Literature study indicates that the ELM has significantly higher learning 

speed compared to that of a traditional feed-forward network learning algorithms while showing better 

generalization performance [17-20]. Based on empirical risk minimization theory, the learning process  

of the ELM requires only a single iteration. Unlike traditional learning algorithms, the ELM shows relatively 

smaller training error with smaller norm of weight [21]. This, in turn, leads to a better generalization 

performance [22]. To date, the ELM has shown good performance in regression applications as well as in 

large dataset classification applications [23-27]. This emerging learning mechanism is gaining popularity due 

to its robustness, controllability, fast learning rate, and good generalization performance. In this research,  

the Gaussian Mercer Classifier is incorporated in the ELM as the kernel decision making for the switchgear 

health condition. The flowchart of the algorithm is as illustrated in Figure 1. The switchgear health condition 

determination algorithm development in this research can be generally divided into three major phases, 

namely the training phase, the validation phase, and the prediction of new data phase. Several steps are 

required to complete each of the phases. 

 

2.1. Training phase 

The first step of this phase is on the training data collection. Data is collected by using Partial 

Discharge (PD) Detector. In the concept of ELM, all input data will be restored as shown in (1). 
 

𝑋 =

[
 
 
 
 

𝑋11 𝑋12 …
𝑋21 𝑋22 …
⋮ ⋮ ⋱

𝑋1𝑀

𝑋2𝑀

⋮

𝑋𝑁1𝑋𝑁2 … 𝑋𝑁𝑀]
 
 
 
 

𝑁×𝑀

 (1) 

 

In this study, M is set to 10 000 while N is the number of data sample, yielding (2). 
 

𝑋 =

[
 
 
 
 

𝑋11 𝑋12 …
𝑋21 𝑋22 …
⋮ ⋮ ⋱

𝑋110000

𝑋210000

⋮

𝑋𝑁1𝑋𝑁2 … 𝑋𝑁10000]
 
 
 
 

𝑁×10000

 (2) 
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Figure 1. The Flowchart for Main Procedures of ELM Training and Validation 
 

 

The (3) shows the target output vector, T. 
           

𝑇 = [

𝑡1
𝑡2
⋮
𝑡𝑁

] (3) 

 

The second step is on the initialization. The number of Activation Function, L, is defined to be a positive 

integer value. The type of activation function is defined with the common choice as the Gaussian Radial 

Basis Function (RBF) or Gaussian Sigmoid function. This is to determine a suitable activation function for 

the algorithm. An input weight matrix, a, is randomly assigned. Upon completion, the activation function is 

now computed in hidden layer. The Sigmoid function is represented in (4) and (5). 
 

𝑯𝟏 =
𝟏

𝟏 + 𝒆−(𝒂𝒊.𝒙𝒋
𝑻+𝒃𝒊)

 (4) 

 

𝑯𝟏 =
𝟏

𝟏 + 𝒆−(𝒂𝟏.𝒙𝟏𝟏+𝒂𝟑.𝒙𝟐𝟏+𝒂𝟓.𝒙𝟑𝟏+𝒃𝟏)
 (5) 

 

The same activation formula is used for all nodes. Then, the hidden layer matrix is computed. The matrix and 

both Sigmoid and RBF functions are defined in (6) and (7) respectively. 
 

𝑯𝒊𝒅𝒅𝒆𝒏 𝑳𝒂𝒚𝒆𝒓 = [

𝑯𝟏

𝑯𝟐

⋮
𝑯𝑵

]

𝑵×𝑳

 (6) 
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𝑯𝟏 = 𝒆{−𝒃𝒊‖𝒙𝒋−𝒂𝒊‖
𝟐
}
 (7) 

 

Note that either Sigmoid or RBF function needs to be used. In this project, Sigmoid has been chosen in  

the programming of the classifier. 

In step 4, the output weights are calculated. Under ideal condition, it is assumed that Y=Hm, where 

m is the output weight matrix. The weight can be obtained by m=H-1 Y. However, the inverse (inv function) 

matrix above cannot be solved since H is very likely to be a non-symmetry matrix.To solve this problem,  

a Moore-Penrose Pseudo inverse matrix (Pinv function) method is employed, yielding (8). 
 

m=(𝐻𝑇𝐻)−1H𝑇Y (8) 
 

In step 5, the accuracy rate for training data is computed. Once β is computed, the same training  

data is used to calculate the accuracy rate. The output matrix Y [y1y2 ... yN] T was computed based on H,  

as shown in (9). 
 

𝑌 𝑠𝑖𝑔𝑛𝑢𝑚(Hβ) 
 

𝑆𝑖𝑔𝑛𝑢𝑚(𝑣) = {
1    𝑖𝑓 𝑣 ≥ 0
−1  𝑒𝑙𝑠𝑒         

 
(9) 

 

Accuracy rate of training data can be calculated by 100% x number of training data that are correctly 

classified, divided by the number of training data (N). The final step is to save L, input and outputs weight  

(a, band β) for validation and prediction phases. 

 

2.2. Validation phase 

The first step in this phase is to validate the data. A sufficient number of training pairs with P 

validation samples are collected, each with an input vector and respective target output vector, as shown in (10). 

 

𝑊 = [

𝑤11 𝑤12

𝑤21 …
… 𝑤1𝑀

… …
…
…

…
…

𝑤𝑃1 …

…
…

…
…

… 𝑤𝑃𝑀

]

𝑃×𝑀

 

 

𝐷 = [

𝑑1

𝑑2…
𝑑𝑃

]

𝑃×1

 

(10) 

 

The second step is to load previous information. L, input and outputs weight (a band β) are loaded from 

training phase. In the third step, the hidden layer matrix is calculated. The hidden layer matrix and sigmoid 

function are defined in (11). 
 

𝑯𝟏 =
𝟏

𝟏 + 𝒆−(𝒂𝒊.𝒙𝒋
𝑻+𝒃𝒊)

 

 

𝑯𝒊𝒅𝒅𝒆𝒏 𝑳𝒂𝒚𝒆𝒓 = [

𝑯𝟏

𝑯𝟐

⋮
𝑯𝑷

]

𝑷×𝑳

 

(11) 

 

Step 4 computes the accuracy rate for validation data. The output matrix Y=[y1 y2 ... yP]T was 

computed based on H, while Y=signum(Hβ). The accuracy rate of validation data can be found by 

multiplying the number of validation data that correctly classified with 100%, divided by the number  

of validation data (P). 

 

2.3. Prediction of a new prediction data 

The first step in this phase is to load previous L, input and outputs weight (a, band β) from  

the training phase. It is followed by loading new input data, as shown in (12), where y is the classified 

switchgear health condition based on the input data. 
 

𝑦 = 𝑠𝑖𝑔𝑛𝑢𝑚(hβ) (12) 



          ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 9, No. 2, April 2020 :  558 – 564 

562 

Information and data from various switchgears were gathered in order to develop the algorithm  

to identify the corona discharge in the switchgear. Basically, repair information during maintenance  

and ultrasound data are acquired. The collected ultrasound data were segregated into 314 cases of normal 

case (no fault) and 228 cases of corona discharge. Noise from ultrasound data were removed before upload it 

as training data for the ELM model. Figure 2 shows an example of the wave pattern of the sound made 

during a Corona discharge.  
 

 

 
 

Figure 2. Corona discharge sound wave pattern sample 

 

 

3. RESULTS AND ANALYSIS 

Experiments are carried out to test the performance of the developed algorithm in identifying  

the Corona faults in the switchgears based on the sound waves generated when operating. The experiments 

are conducted in two different domains, namely in time domain and in frequency domain. The results 

obtained by the algorithm in training phase, validation phase and testing phase are shown and discussed. 

A total of 160 samples of data were used for ELM training, validation and testing in time domain 

analysis and experiment. The feature number is 10,000 and the hidden neuron number is 1,200. The corona 

time domain classifier categorizes all data instances of a test dataset as either positive or negative.  

This classification produces four outcomes - true positive, true negative, false positive and false negative. 

The classification or corona fault detection accuracy is calculated as the total number of two correct 

classifications (TP + TN) divided by the total number of a dataset (P + N), which is expressed and calculated 

with the equation as follows: 
 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
× 100% 

 

       =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
× 100% 

 

 

The error rate (ERR) is calculated as the number of all incorrect classifications divided by the total number  

of the dataset by using the equation as follows: 
 

𝐴𝑐𝑐 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
× 100% 

 

       =
𝐹𝑃 + 𝐹𝑁

𝑃 + 𝑁
× 100%  

 

 

Table 1 shows the output matrix for training phase in time domain. There are 128 sets of data used 

in the training phase; 26 cases of Corona and 90 cases of non-Corona are successfully identified; 3 cases  

of Corona are wrongly identified as non-Corona while 9 cases of non-Corona are wrongly identified as 

Corona. Overall, the accuracy is calculated to be at 90.63% with the error rate of 9.37%. 

In the validation phase of time domain analysis, 24 sets of data are used. Twenty cases  

of non-Corona are successfully identified. Overall, the accuracy is calculated to be at 87.5% while the error 

rate is at 12.5%. Table 2 shows the output matrix. Table 3 shows the output matrix for testing phase in time 

domain, in which 8 sets of data are used. The algorithm successfully identified 1 Corona fault and all 6 of the 

non-Corona cases. The testing marks an overall 87.5% accuracy with 12.5% error rate. Frequency domain 

analysis also employed 160 sets of data, in which 128 sets, 24 sets, and 8 sets are used for training, 
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validation, and testing phases respectively. Feature number is at 5,000 while hidden neuron number is at 150 

for frequency domain analysis. The calculations for the accuracy rates and error rates are the same as in time 

domain analysis. Table 4 shows the output matrix for training phase in frequency domain. There are 21 cases  

of Corona and 94 cases of non-Corona successfully identified; 3 cases of Corona are wrongly identified as 

non-Corona while 10 cases of non-Corona are wrongly identified as Corona. Overall, the accuracy  

is calculated to be at 89.84% with the error rate of 10.16%. 

In the validation phase of frequency domain analysis, 24 sets of data are used. There are 3 cases  

of Corona and 17 cases of non-Corona are successfully identified. Overall, the accuracy is calculated to be at 

83.33% while the error rate is at 17.67%. Table 5 shows the output matrix. Table 6 shows the output matrix 

for testing phase in time domain, in which 8 sets of data are used. The algorithm successfully identified both 

the Corona faults and 5 non-Corona cases. The testing marks an overall 87.5% accuracy with 12.5% 

error rate. 
 

 

Table1. Output matrix for training phase: 

time domain corona fault classification 

 
Identified to be 

Corona 

Identified to be 

non-Corona 

Actual Corona 26 3 
Actual non-Corona 9 90 

 

Table 2. Output matrix for validation phase: 

time domain corona fault classification 

 
Identified to be 

Corona 

Identified to be 

non-Corona 

Actual Corona 1 1 
Actual non-Corona 2 20 

 

 

 

Table 3. Output matrix for testing phase: 

time domain corona fault classification 

 
Identified to be 

Corona 

Identified to be 

non-Corona 

Actual Corona 1 1 

Actual non-Corona 0 6 
 

Table 4. Output matrix for training phase: 

frequency domain corona fault classification 

 
Identified to be 

Corona 

Identified to be 

non-Corona 

Actual Corona 21 3 

Actual non-Corona 10 94 
 

 

 

Table 5. Output matrix for validation phase: 

frequency domain corona fault classification 

 
Identified to be 

Corona 
Identified to be 

non-Corona 

Actual Corona 3 2 

Actual non-Corona 2 17 
 

Table 6. Output matrix for testing phase: 

frequency domain corona fault classification 

 
Identified to be 

Corona 
Identified to be 

non-Corona 

Actual Corona 3 2 

Actual non-Corona 2 17 
 

 

 

4. CONCLUSION  

Switchgear is a component of high importance in a distribution network to ensure safety especially 

during downstream maintenance. Without proper monitoring and inspection, a switchgear can fail due  

to many types of faults. A robust fault identification system can be very useful to eliminate manual  

and random inspections. In this research, a sound-wave-based fault detection system is proposed  

with the implementation of Extreme Learning Machine (ELM). Experiments are carried out to investigate  

the performance of the developed algorithm in identifying Corona faults in switchgears. Analysis are carried 

out in time and frequency domain, respectively. In time domain analysis, the results show 90.63%, 87.5%, 

and 87.5% of success rates in differentiating the Corona and non-Corona cases in training, validation  

and testing phases respectively. In frequency domain analysis, the results show 89.84%, 83.33%, and 87.5% 

success rates in training, validation and testing phases respectively. It can thus be concluded that the 

developed algorithm performed well in identifying Corona faults in switchgears. With the development  

of the algorithm, the utility companies can have a standard analysis, which in turn grants a more accurate 

decision making to prioritize the urgency for the remedial works. In time to come, the research can be 

expended and implemented to identify other switchgear faults, and even other engineering  

categorization problems. 
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