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 We introduce the novel technical results of the enhanced logging system for 

customer virtual machines (VMs) in an infrastructure as a service (IaaS) 

cloud. The main contribution is that the enhanced system can work with  

a better system's accuracy and speed, with the simplicity of the design  

and implementation. We measure the accuracy of the unenhanced logging 

system, then find a quick solution to enhance the system based on the results 

of the measurement. To measure and enhance the unenhanced system,  

we increase the main memory and CPU cores of the VMs then collect  

the accuracy results from each increment configuration. We analyze  

the results and propose to use the taskset tool to enhance the accuracy  

of the system. Found three main findings include: firstly, the accuracy  

of the enhanced system is about 20% on maximum better than  

the unenhanced one; the enhanced system accuracy becomes 100%; lastly, 

the enhanced system can detect a file with the smaller file size as almost 12% 

smaller. The findings can be a basis to design the logging systems in an IaaS 

cloud, to decrease hardware and energy investment. To the best of our 

knowledge, the contribution and findings are not in the literature. 
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1. INTRODUCTION  

This paper describes a novel technical result, which is a performance evaluation of our previous 

system.  The evaluation is obtained through appropriate measurements.  Then, based on the evaluation,  

we introduce a solution to enhance the system.  A cloud computing deploys virtualization technology to 

enable itself to store and process massive data [1]. The cloud computing, or for short, the cloud  

is increasingly important for an information technology/ IT ecosystem [2, 3]. One of the factors to realize  

the smart applications to improve human living life is the cloud, which can store and process huge data 

generated from human activities. However, the security of this data is also critical. One type of cloud called 

an infrastructure as a service (IaaS) cloud, such as Amazon Elastic Compute Cloud [4] focuses on offering  

a virtual machine or VM product to an IaaS customer.  The customer can rent the VM and access it via  

the Internet.  A VM mainly composes of data storage and network.  The customer can also install his/ her 

favorite operating system in the VM.  An IaaS cloud is widely deployed in many areas, for example, 

government, education, or medical experiment, as agreed by [5-8]. For example, to improve students living 

https://creativecommons.org/licenses/by-sa/4.0/
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life, [8] exploits the combination of the advantages of the cloud and the internet of things to build a simple, 

smart classroom. 

 However, the security issue of the IaaS cloud is critical and needs to be mitigated [9]. To indicate  

the issue, the Cloud Security Alliance or CSA has published many reports on threats to the IaaS cloud,  

such as [10, 11]. A logging system can log the data of incidents that happened in a customer IaaS VM,  

such as who has access to or what happens with a customer file in a disk of the VM [12, 13]. The logging 

system, which composes of a logging process and log file [12], can be one of the solutions to mitigate the 

risks associated with the threats above. 

‒ Research gaps: previous research such as [9, 13-17] does not focus on measuring the accuracy  

of the logging system with a varying method, such as by increasing the number of the CPU cores and main 

memory sizes of a customer VM. The results of this measurement can be analyzed. Then, the result of this 

analysis can be a foundation for appropriately enhancing the accuracy of the logging system. Thus, this paper 

focuses on the design and implementation of this measurement. Then, we will enhance the accuracy  

of the logging system, based on the results of the measurement. 

‒ Contribution: the main contribution is that the enhanced logging system can work with better system’s 

accuracy and speed, and with the simplicity of the design and implementation. The contribution  

is from the three findings, as briefly described as following. Firstly, when with a varying method by 

increasing the CPU cores of a customer VM, the accuracy of the enhanced logging system is 20% on 

maximum better than the unenhanced one and more stable. Secondly, when with a varying method by 

increasing the main memory sizes of an IaaS customer VM, the enhanced logging system accuracy becomes 

100%. Alternatively, we can say that increasing the main memory sizes of the VM does not affect  

the accuracy of the enhanced logging system, whereas it does with the unenhanced one. Note that, from both 

findings above, we deploy both varying methods (by increasing the CPU cores and the main memory sizes  

of a customer VM) for the aim to measure the accuracy of the logging system. Then, we use the result of  

the measurement to be analyzed to find a quick solution to enhance the system. We did not aim to compare 

both methods.  

 Lastly, the last finding is that the enhanced logging system can detect a sensitive file in the VM with 

the smaller file size as 12.19% smaller than the unenhanced one can. This also makes the enhanced system 

works faster or better. A logging system performance has based the accuracy of the system [18]  

(will be discussed in section 2.4) and the speed of the system; thus, the findings above can successfully 

enhance the performance of our previous logging system [18]. The findings can be a guild-line for a logging 

system designer to enhance his/her system. This can also enable the system to work faster or better and 

increase its accuracy. These findings can also help in planning to decrease hardware and energy investment 

in a cloud ecosystem. As a result, the guild-line from this paper can be one of the solutions to sustainably 

mitigate risks associated with the security issue of the IaaS cloud. To the best of our knowledge, there are no 

these three contributions in the literature. 

 

 

2. BACKGROUND 

2.1. Infrastructure as a service cloud architecture 

Figure 1 illustrates an IaaS Cloud and logging system architectures. In this paper, both architectures 

are adapted from our previous work [12, 18]. Section 2.2 will describe the main components or the logging 

system architecture or all the shaded boxes in Figure 1. This section here will briefly describe the IaaS Cloud 

architecture as follow. All the white boxes, ellipse, and text file shape in Figure 1 are the main components  

of the IaaS architecture.  The white boxes components include hypervisor, dom0, hw0, domU, hwU, disk0, 

diskU, and memU.  A component name ending with ‘ 0’  means that it is physically owned and managed  

by an IaaS provider.  Whereas, ending with ‘ U’  means that component is virtually owned and managed  

by a cloud customer.  The box with number 2 in Figure 1 is a hypervisor, which is software that allows  

a physical computer to host more than one VM. The box inside the domU, the ellipse, and the text file shape 

in Figure 1 are the experimental purposes. Their detail will be discussed in section 2.2. 

The topmost left white box in the figure is a dom0 or domain 0, which is a manager of the entire 

customer created VMs. At the system booting time, a dom0 is launched by the hypervisor. A dom0 is also  

a VM, and exclusively accesses and control hw0, and all the customer created VMs or domUs. The bottom  

box in Figure 1 is hw0 that is all the physical hardware managed by a dom0.  The topmost right white  

box in Figure 1 is a domU or user domain, which is a user VM that is created by dom0. This domain runs  

on top of the hypervisor. A domU is an IaaS cloud product that the provider offers to an IaaS customer. HwU 

is physically located in hw0 and is domU’ s virtual hardware.  HwU is physically owned and managed  

by a dom0 or by the provider.  However, hwU is virtually owned and managed by a domU owner or IaaS 
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customer.  A disk0 is a physical disk of a dom0, and a diskU is a virtual disk of a domU. Finally, memU  

is domU’s virtual main memory. 

 

 

 
 

Figure 1. Infrastructure as a service cloud architecture and logging system architecture adapted from [12] 

 

 

2.2.  The logging system architecture 

A logging system can log incidents that happened in a customer IaaS VM such as who has access  

to or what happens with a customer file in a disk of the VM [12, 13]. A logging system can compose  

of a logging process and log file [12]. This paper will call the logging process as a logger.  The system 

architecture of the logging system is from our previous work [ 12, 18] , and is also illustrated in Figure 1.  

In this paper here, the architecture will be applied to the experiment in section 3. 

The box inside the domU in Figure 1 is the read process.  For the purposes of the experiment,  

we assume that somehow, this process can be controlled by an attacker. As a result, he/she can maliciously 

read a sensitive file or s. txt of an IaaS customer in diskU, see the document shape inside the diskU. 

Read_mem in memU represents a reserve memory space for the read process provided by the OS that hosts 

this process.  The white box in the dom0 is LibVMI, which is the new name of XenAccess [19]. It is a C 

library that is installed in the dom0, and then it can access read_mem in memU for detecting the malicious 

reactivity of the read process that is reading s.txt. 

Note that we did not demonstrate the assumption above. However, the assumption is also referred  

to in proposing logging solutions in the cloud.  I n  [13, 20] consider this assumption when proposing their 

logging solutions in the cloud.  For example, [13] assumes that when a user ‘Alice’  creates a sensitive file 

( such as s. txt)  and modifies this file.  Then, somehow, a user ‘ Bob’  can maliciously read the file without 

Alice’s permission.  

From Figure 1, the three working steps of the logger are represented by the circles with numbers 1  

to 3. Step1, the logger in the dom0 calls LibVMI to access memU to obtain the logging data from read_mem 

(step2). This data includes i) a file name of s.txt or the string “s.txt”, ii) the process ID of the read process. 

Then, LibVMI accesses memU to obtain this data in read_mem. Then, it returns the obtained data back  

to the logger. Finally, the logger manages the data then writes (in step3) the data into the log file. 

 

2.3.  The context switching task and taskset tool 

A context switching task is a swapping process between a former executed process from the CPU 

and a latter process [21]. Thus, when the logger process is hosted in a dom0 with more than one core,  

the operating system (OS) of the dom0 may switch the logger from the current core to the new one,  

for example, from the current core number 1 to the new core number 2.  When switching, the OS has to  

move the associated processing data of the logger from mem0 to caches of the new core ( such as the core 

number 2)  [ 22, 23] .  A cache is a very high-speed memory and is a buffer between the main memory  

and the CPU [24]. Thus, this switching task of the OS mentioned above can consume more processing time 

of the logger. 

Taskset is a tool that can specify a process to be run on a particular CPU core in a Linux OS [25].  

In our experiment in Section 3, this tool is used to fix one CPU core for the logger. Thus, the logger can have 

its own core to be exclusively performed. As a result, the OS that is hosting the logger process does not need 

to switch the process from the current core to another one. Consequently, this non-switching task situation 

can decrease the processing time of the logger. 
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Taskset tool is used as a solution to enhance the accuracy of the logger in this paper. However, there 

are other solutions for enhancing the accuracy of the logger.  For example, we can enhance the logger  

by analyzing the existing logger code to enhance the algorithm of this logger.  The taskset tool has  

well-known performance effects in a Linux system; however, in this paper uses the tool as the solution.  

This is because of that; we want to initially introduce a simple, available, and quick solution for  

the enhancement to obtain the initial results.  This is also to avoid the modification of the existing 

logger.‘[root@localhost logger_tester_new]# taskset –c 6-7./logger’ is the full command of taskset that will be 

used in the experiment in Section 3. This command means that to set the logger process (‘./logger’) to be run 

on the CPU core number 4 (‘-c 6-7’) of a dom0 that is hosting the logger. 

 

2.4.  Performance and accuracy of a logging system 

The cloud architecture is complicated to understand and more abstract than a traditional  

client-server model [26]. As a result, this may also cause the performance measurement of logging systems in 

the IaaS cloud to be complicated. However, the performance measurement is essential because it can provide 

trust in the security of cloud user data and processing in an IaaS [9, 18]. Briefly, from our previous  

work [18], one of the four application system key performance indicators (KPIs) is response time. [27] states 

that response time is the amount of time it takes for the application when responding to a user request.  

This paper focuses only on the response time, as the example KPI of performance measurement to encourage 

researchers to concern all the KPIs. We also concern only on the accuracy of a logging system that is hosted 

by a dom0. The accuracy means the accuracy of the logging system in logging the logged information from 

memU of a target monitored domU. The accuracy is considered as one of the factors of the response time 

KPI, as also argued by [18]. Thus, we assume that if the accuracy of a logging system is enhanced, then  

the performance of the system is also enhanced. To measure the performance of a logging system, the next 

section fully discusses the measurement method of the accuracy of the system. 

 

2.5. The measurement of the logger accuracy 

We performed the measurement of the accuracy of the logger in our previous work [12].  

The measurement can represent a real-world scenario [18]. Thus, this paper here aims for new purposes  

of the experiment and with the new experimental environment, apart from the previous work above.  

Thus, the detail below is a brief description of the measurement that will be adjusted then applied to  

the experiment of this paper.  

The box in the domU in Figure 1 is the read process. The practical steps of the process are: 1) to 

open the s.txt file (the document symbol in diskU in Figure 1), 2) to read and display the content of the file 3)  

to close the file, finally 4) the process is terminated. For the purposes of the measurement of the accuracy  

of the logger, a sleeping time (from [12]) is a time value that is added to the read process steps above before 

the process is terminated. A sleeping time will be in a millisecond unit, for example, 60ms. This means that 

after the 4th step activity of the read process, the process will be idled or slept for 60ms. After that, it will be 

terminated. We aim to decrease the value of the sleeping time. The more we can decrease this value,  

the accuracy of the logger will be increased. Ideally, the sleeping time is 0. 

When measuring the accuracy of the logger (the shaded box in the dom0), we firstly set the sleeping 

time for the read process, such as 65ms. Then, we run the logger and run the read process for, for example, 

100 times. Finally, this allows the logger to detect the file name of s.txt for 100 times. The accuracy of  

the logger is measured by a number of times that the logger captures the correct file name as the string “s.txt” 

from read_mem. This is called 1 ‘hit’, otherwise is 1 ‘miss’. Thus, if the read process reads s.txt files 100 

times, and the logger can capture the string “s.txt” for all these 100 times, this is 100 hits [9]. This means that  

the logger has the accuracy as 100% with when the read process has the sleeping time as 65ms. This can  

be translated as the logger can have 100% of its accuracy when the read process (that is used by an attacker  

to read s.txt) needs to be in memU/read_mem for at least 65ms. 

 

 

3. THE EXPERIMENT 

It is because of that before the enhancement, and from our primarily extra experiment, the logger 

can perform well with hw0 equipped with 8 CPU cores. Thus, the enhanced logger is fixed to run on only one 

CPU core of this hw0. Before measuring the accuracy of the enhanced logger, we also performed the same 

experiment of the enhanced logger to the unenhanced one. Then, we obtained the results of both to be 

compared. Note that, on the hw0 8 cores, the unenhanced logger was not fixed to run on only one CPU core. 

It can be switched from one to another core, depending on its OS manager at that point in time. The other 

details of the experiment are below. Note that the experimental methods in this paper are the same as some 
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parts of the methods done by our other work [9]. However, the work is for examining the accuracy of logging 

systems, but this paper here is for enhancing the systems. 

 

3.1.  The hardware and software of the experimental environment 

We set up the experimental environment based on an Intel Xeon 3.06 GHz with CPU 64-bit 8 CPU 

cores. The machine has SDRAM 8 GB of main memory, and 320 GB of the secondary memory. A Fedora 16 

64-bit is the OS of the machine.  Then, we installed Xen 4.1.4 as the hypervisor ( the box with number 2  

in Figure 1) on top of the OS. This hypervisor is used to simulate an IaaS cloud on this machine or Figure 1. 

Then, we installed LibVMI 0.10.1 library (the box inside the dom0 in Figure 1) on the OS. This library can 

be called by the logger to access to memU from the dom0, as discussed in section 2.2. In the domU, we also 

installed a Fedora 16 64-bit as its OS and set up the read process on top of this OS. 
 

3.2.  The hardware environment configurations of the logger process 

The read process in domU in Figure 1 can perform actions on s.txt or the document shape in diskU  

in the figure. The details of the actions, of how the logger (the white box in the dom0) preform, and of how  

to measure its accuracy were mainly discussed in section 2.2 ( in Figure 1) , and 2.5 above. The main step  

of the experiment in this paper is to measure the accuracy of the logger when the logger is recording logging 

data from some of the actions of the read process with the s. txt file.  Then we will analyze the results  

to be ready to provide a solution to enhance the accuracy of the logger.  To see the trends of the logger 

accuracy, the experiment will be performed on mainly different hardware configuration environment of  

the domU, as will be discussed in the following sections.  In Figure 1 and on the different hardware 

configuration environment of the logger, the experiment will be performed by measuring the accuracy values 

of the logger after each hardware environment configuration by increasing the numbers of CPU cores of  

the domU, and by increasing the sizes of memU of the domU. Section 3.3 gives an overview of increasing 

domU CPU cores labs, illustrated in Figure 2(a). Then, Figure 2(b) illustrates the increasing sizes of memU 

in section 3.5. 

 

3.3.  The overview of domu cpu cores increasing labs 

Section 3.4 will give the full definition of a lab. Here in this section, it is the overview of increasing 

domU CPU cores labs. Figure 2(a) illustrates eight labs of increasing the CPU cores of a domU from 1 to 8. 

In Figure 2( a) , see the freeform shape that rounds both the dotted-line box and the top shaded box with 

labeled ‘du1c’, this is one lab of our experiment or a d08c-du1c lab. In Figure 2(a), this lab also represents by 

the first arrow from the dotted-line box to the top shaded box.  Thus, the right white box or Figure 2( a)  

is d08c, which is with eight labs or d08c-du1c, d08c-du2c, ..., and d08c-du8c. Section 2.5 already discussed 

that the accuracy of the logger is measured by the number of times that the logger captures the right file name 

or a string “s.txt” in read_mem. Moreover, section 2.5 already discussed hit and miss, and how to calculate  

the actuary of the logger in a percentage. Then, we will describe what is a lab in detail below. 

 

 

 
 

Figure 2. d08c and m08G experimental environment (with the enhanced logger fixed 1c),  

(a) Eight labs of increasing the CPU cores of a domU from 1 to 8, (b) A dom0 deploying 8 GB of mem0 

 

 

3.4. ‘A lab’ for increasing the CPU cores of domU 

We modified the logger and the read process in Figure 1 for the experiment in this paper.  

Thus, the procedures of the logger and the read here may be slightly different from Figure 1.  A lab  

is illustrated by the freeform shape that rounds both the dotted-line box and the top shaded box with labeled 
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‘du1c’ in Figure 2(a) . The lab has three steps or st1 to st3.  St1 is to run the logger in dom0. St2 is to run  

the read process 1000 rounds in domU.  Each round is independent but is ordered from 1st to 1000th.  

Thus, when the first read process is run and finished, then the second one is run and finished. Then, this is so 

on until the 1000th read process is run and finished. At the same time, the logger (that is already run only one 

time by st1, before the first round of the read process running)  will capture the “ s.txt”  string (this is 1 hit) 

from each round of the read process, string from the 1st to 1000th rounds. Then, it will store the string into  

the log file.  This is also one round of the read process is done. Then the logger will wait for the next read 

process round running. When the logger obtains the “s.txt” string of each round, each hit will be accumulated 

by 1 per hit. 

The last step or st3 is when the accumulated number of hits of these 1000 rounds is calculated  

and recorded. To sum up, a lab means we performed st1 to st3. Then, we obtain the first accumulated number 

of hits of these first 1000 rounds of running the read process.  Then, we perform st1 to st3 for the other  

nine times. After that, we will achieve the other nine accumulated numbers of hits. Finally, we can calculate  

the accuracy of the logger from these ten accumulated numbers of hits as a percentage. This is a lab and also 

the first lab or lab 1, which is d08c-du1c or the freeform shape in Figure 2(a). Then, we performed the other 

sever labs as d08c-du2c, d08c-du3c, …, d08c-du8c, as illustrated by Figure 2(a). 

 

3.5. Increasing the sizes of memU 

The objective of this section is to study the trend of the accuracy of the enhanced logger when 

increasing the sizes of memU. The logger has to capture the necessary logging data from domU. The data  

are in read_mem and as PID of the read process, the name of the read process, UID or the ID of the owner of 

the read process, lastly, the file name that the read process is reading, as described in section 2.1. For dom0, 

the dotted-line box in Figure 2(b) is m08G, which represents a dom0 that deploys 8 GB of mem0. We will 

explain three labs or the white box of Figure 2(b) , as follows. In Figure 2(b) , see the freeform shape that 

rounds both the dotted-line box and the top shaded box with labeled ‘mu1G’ , this is one lab of our 

experiment or m08G-mu1G lab or the first thick line with the arrow from the top of Figure 2(b). Thus, see  

the white box of Figure 2( b) , m08G is with three labs or m08G-mu1G, m08G-mu2G, and m08G-mu3G. 

From Section 2.5, we already discussed that the accuracy of the logger is measured by the number of times 

that the logger captures the right file name or a string “s.txt” in read_mem. Moreover, section 2.5 also already 

discussed a ‘hit’  and ‘miss’, and how to calculate the actuary of the logger in a percentage. Then, we will 

describe what a lab of main memory experiment is, below. 

 

3.6. ‘A lab’ of memU experiment and the three labs for the main memory of dom0 8GB 

We modified the logger and the read process in Figure 1 for the experiment in this paper.  

Thus, the procedures of the logger and the read here maybe not entirely the same as ones from Figure 1.  

The logger is run in our maximum and available main memory of dom0 as 8GB. We labeled this memory  

as m08G. See in Figure 2(b) at the freeform shape that rounds both the dotted-line box and the top shaded 

box with labeled ‘mu1G’; this is a lab of increasing main memory. This lab has three steps or sm1 to sm3.  

These three steps are as the same st1 to st3, respectively, as just discussed in Section 3.4 above. Thus, a lab 

here means we performed sm1 to sm3, and gets the first accumulated number of hits of the first 1000 rounds  

of running the read process.  Then, we perform sm1 to sm3 for the other nine times.  Thus, we can obtain  

the other nine accumulated numbers of hits.  Finally, we can calculate the accuracy of the logger from  

these ten accumulated numbers of hits as a percentage.  This is a lab and also the first lab or lab 1,  

which is m08G-mu1G as showed by the freeform shape in Figure 2(b). For the three labs for m08G,  

see the white box of Figure 2(b) , it is three labs.  The first lab is just discussed above. Then, the two labs  

are outside the freeform shape. They are lab 2 or m08G-mu2G and lab 3 or m08G-mu3G. These three labs 

for m08G or the white box or Figure 2(b). 

 

 

4. RESULT AND DISCUSSION 

The conclusion is that from section 4.1, 4.2, and 4.3 below, the enhanced logger is faster or better 

and more stable than the unenhanced one. This can be a guild-line for a logging system designer to enhance 

his/her system. This enables the system to work faster or better and to increase its accuracy. The guild-line 

can also help in planning to decrease hardware and energy investment in a cloud ecosystem.  As a result,  

the guild-line can be one of the solutions to truly and sustainably mitigate risks associated with the security 

issue of the IaaS cloud.  The details of the results and discussions are below.  This paper is focusing on to 

enhance the accuracy of the logger process.  Thus, the paper did not measure or discuss the effect on 

aggregated system performance caused by pinning the process. This is future work. 
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4.1. The enhanced and unenhanced logger with increasing domU CPU cores finding 

The results and discussions in this section are from the experiment descriptions in section 3. 3  

and 3.4. The conclusions are that the unenhanced logger has unstable accuracy values when increasing the 

CPU cores of the domU. However, the enhanced logger can work faster or better to capture the read process; 

even the read process is run in a domU with any number of its cores.  This enables the accuracy of  

the enhanced logger to be better than the unenhanced one, and more stable. The details are below. 

 

4.1.1. The unenhanced logger with its low and unstable accuracy when increasing domU CPU cores  

From Figure 3, the x-axis is when the number of CPU cores of the domU is increasing from 1 to 8 

cores (du1c, du2c, ..., du8c). Also, the y-axis shows the sleeping time values of the read process. The lower 

sleeping time value increases the accuracy of the logger.  The conclusion is that the enhanced logger can 

capture the read process when this process is in memU for at least 60ms. Whereas, the unenhanced logger 

can capture the process when the process is in memU for at least 65ms. The enhanced logger can work faster 

or better than the unenhanced one for 5ms or at 60ms.  Importantly, when CPU cores of the domU  

are increasing from 1 to 8 cores, the logger accuracy values are all 100% at when the read process with 60ms. 

 

 

 
 

Figure 3. The enhanced and unenhanced logger with increasing the number of the domU CPU cores findings 

 

 

The dotted line in Figure 3 shows the sleeping time values of the read process when CPU cores  

of the domU are increasing from 1 to 8 cores. There are three periods of the trend in this figure. The first one 

is when the CPU cores of domU are increased from 1 to 2 cores, the sleeping time values are the same  

as 65ms. This period has the best accuracy values of the logger. It is because there are only one and two cores  

of the domU.  Thus the OS of the domU did not switch the read process so many times, as discussed in 

section 2. 3.  Thus, the read has more chances to appear in memU.  As a result, the logger also has more 

chances to capture the read process, then the accuracy of the logger is better than the other periods. 

The second period is when the CPU cores are increased from 2 to 6. This makes the sleeping time 

values are continuously increased from 65 to 75ms. This means that the logger accuracy values are roughly 

decreased when increasing the CPU cores of the domU from 2 to 3, 4, 5, and to 6.  This is because when  

the domU can have 2 to 6 CPU cores, the OS of this domU may need to switch the read process from one to 

another core.  This switching task reduces the chances of the read process to be appeared in memU, as 

discussed above and in section 2.3. Thus, this may also decrease the chances of the logger to capture the read 

process. Thus, the logger accuracy is also decreased. 

Then, the last period is when CPU cores of the domU are increased from 6 to 7, and to 8.  

This makes the sleeping time values dropped from 75ms to 73ms, then to 70ms. This means that the accuracy 

values of the logger are increased when the CPU cores of the domU are increased from 6 to 8 periods. This 

may be because of that the domU starts to have enough CPU cores to perform the read process.  Thus, this  

is also not many switching tasks.  Thus, the read process has more chances to be appeared in the memU,  

compared to when the number of the CPU cores is, for example, at 6 or 5 cores.  Thus, this also increases 

more chances for the logger to capture the read. Then, the accuracy of the logger is increased. 

To sum up, the dotted-line shows the unstable accuracy values of the unenhanced logger when 

increasing the CPU cores of the domU, this is the host of the read process. This should be because  

of the switching tasks, as discussed above.  After we analyze the results and discussions in this section,  

we then perform the experiment with taskset tool to enhance the logger.  The next section ( section 4.1.2)  

is the results and discussions of the enhanced logger. 
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4.1.2. The enhanced logger with its better and more stable accuracy when increasing domU CPU cores  

As the accuracy values of the logger or the dotted-line are not stable, then we enhanced the logger, 

and the results are shown by the thick line in Figure 3. The conclusion is that the accuracy of the enhanced 

logger is about 7.69%  to 20.00%  and 14.35%  on average better than the unenhanced one. This is because  

of that the enhanced logger can stably capture the read process when this process is in memU for at least 

60ms.  This time interval is constant for all domU’ s configurations.  Whereas the unenhanced logger can 

unstably capture the process when the process is in memU for at least 65ms (the minimum) and 75ms ( the 

maximum). Thus, the enhanced logger can work faster or better than the unenhanced one for 5ms or 7.69% 

on the minimum case, and on 15ms or 20.00% for the maximum case, and for 10.25ms or 14.35% on  

the average case. Importantly, when CPU cores of domU are increasing from 1 to 8, the accuracy values of 

the enhanced logger are all still 100%, when the read process with 60ms. Thus, the enhanced logger is stable 

compared to the unenhanced one. This is because of the enhanced logger is fixed to run on only one CPU 

core solely. Thus, there are no switching tasks to be performed on the logger, as already discussed in section 

2.3. Thus, the logger can work faster or better to capture the read process; even the read process is run in  

a domU with 1, 2, ..., or, 8 cores. This makes the accuracy of the enhanced logger better than the unenhanced 

one, and more stable. This can be seen by the thick line in Figure 3, which is a straight line with all the same 

sleeping time values at 60ms for all the CPU cores of the domU from 1 to 8. 

To sum up, the logger can work faster or better to capture the read process; even the read process  

is run in a domU with 1, 2, ..., or, 8 cores. This makes the accuracy of the enhanced logger to be better than  

the unenhanced one, and more stable. 

 

4.1.3. Summary  

Section 4. 1. 1 shows the unstable accuracy values of the unenhanced logger when increasing  

the CPU cores of the domU, which is the host of the read process. This should be because of the switching 

tasks.  After the enhancement, the results and discussions in section 4. 1. 2 are that the enhanced logger  

can work faster or better to capture the read process, even the read process is run in a domU with any number 

of its cores.  This enables the accuracy of the enhanced logger to be better than the unenhanced one,  

and more stable. 

 

4.2.  The enhanced and unenhanced logger with increasing memU findings 

The results and discussions in this section are from the experiment descriptions in Section 3.5  

and 3.6. The conclusion of Figure 4 is that taskset tool makes the logger accuracy to be enhanced and to be 

100%. This section also describes the results and discussions from the experiment before and after  

the enhancement of the logger. See, the x-axis of Figure 4, to obtain the results from the experiment before 

and after the enhancement of the logger, the axis illustrates increasing the size of memU from 1 to 3GB 

(mu1G, mu2G, and mu3G). Y-axis of Figure 4 illustrates the accuracy values of the logger in percentages 

when increasing the sizes of memU from 1 to 3GB. 

 

 

 
 

Figure 4. The enhanced and unenhanced loggers with increasing the size of memU finding 

 

 

4.2.1. Increasing memU sizes affects the accuracy of unenhanced logger 

The dotted line in Figure 4 shows the trend of the accuracy values of the logger before  

the enhancement.  The logger accuracy values are decreased as 99.97%, then 99.96%, and finally also 
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99.96%, when the memU sizes are increased from 1, to 2, and finally to 3GB, respectively.  This may be 

because of that the logger needs to search for the data of the read process in a winder area of memU such as 

3GB, compared to 1GB.  This may make the logger miss the read process, compared to when the logger 

searches in a smaller area of memU such as 1GB. 

 

4.2.2. Increasing memU sizes does not affect the accuracy of the enhanced logger 

Section 2.3 discussed that the logger accuracy value of the fixed core environment should be better 

than the switching core environment. From the experiment described in section 3, the thick line in Figure 4 

shows that after the enhancement of the logger by deploying taskset tool, the accuracy values of the logger  

are increased from 99.97% to be 100%, 99.96% to 100%, and also 99.96% to 100%, when the memU sizes  

are increased from 1 to 3GB respectively. This is because of that; when fixing a CPU core for the logger to 

be run solely, this enables the accuracy of the logger to be enhanced. This is because when the logger is fixed 

with one CPU core, it will not be switched to another core, which may decrease the accuracy of the logger,  

as discussed in section 2.3. 

Another point is that when increasing the amount of memU from 1 to 3GB, it does not affect  

the accuracy of the enhanced logger.  All the accuracy values are still the same as 100%. This is because  

the enhanced logger is not needed to be switched.  Thus, the logger can focus only on capturing the read 

process, and the logger did not miss the read process, even when memU sizes are larger. Thus, the accuracy 

values of the enhanced logger are all 100%. 

 

4.2.3. The summary 

It can be seen that when enhancing the accuracy of the logger by using taskset tool which is 

available in the Linux OS, the enhanced logger accuracy becomes 100% , even when increasing the memU 

sizes.  Alternatively, we can say that increasing memU sizes does not affect the accuracy of the enhanced 

logger, whereas it does the unenhanced logger. 

 

4.3.  The enhanced logger can detect a sensitive file with the smaller file size than the unenhanced 

logger 

Before enhancing the logger, we performed the further experiment and found that the logger can 

capture s. txt file with when the smallest file size of this file as about 26,952 bytes.  If a file size of s. txt  

is smaller than 26,952 bytes, the logger will not be able to capture this file. It is because the read process can 

read this smaller file very fast.  Thus, the logger may not be able to capture this reading action on s. txt.  

After the enhancement, the enhanced logger can detect s. txt with the smaller file size as 23,667 bytes, 

compared to 26,952 bytes with the unenhanced logger above.  The difference is 3,285 bytes or 12. 19% .  

This means that the enhanced logger may work faster or better than the unenhanced one.  It is because  

the enhanced logger can capture the read process when it is reading s.txt file with the size as small as 23,667 

bytes. This can be useful when an attacker uses the read process to maliciously quickly read s.txt with this 

small file size as 23,667 bytes, but the enhanced logger can still capture this speedy reading activity. 

Whereas, the unenhanced logger cannot do so. To sum up, the enhanced logger can detect the sensitive file 

with the smaller file size than the unenhanced one can. 

 

4.4.  The overall summary of the enhancement of the logger 

From section 4.1, 4.2, 4.3 above, there are three primary findings after the enhancement of  

the logger. A logging system performance has based on the accuracy of the main component (or the logger) 

of the system [18] (as discussed in section 2.4)  and the speed of the system; thus, these findings can 

successfully enhance the performance of our previous logging system in [18]. For the findings, firstly, when 

with a varying method by increasing the CPU cores of a domU, the enhanced logger can work faster or better 

to capture the read process, even the read process is run in a domU with any number of its cores. This enables 

the accuracy of the enhanced logger to be better than the unenhanced one, and more stable. Secondly, when 

with a varying method by increasing memU sizes of a domU, the enhanced logger accuracy becomes 100%. 

Alternatively, we can say that increasing memU sizes does not affect the accuracy of the enhanced logger, 

whereas it does with the unenhanced one.  Lastly, the enhanced logger can detect the sensitive file with  

the smaller file size than the unenhanced one can.  

These findings can be a basis in a situation, such as, for detecting when an attacker maliciously read 

a sensitive file in a domU/ IaaS cloud customer VM, with any CPU core numbers and/ or any memU size  

of the VM.  For this situation, we recommend a logger designer to use taskset tool to pinpoint the logger 

process. Thus, this process needs to be configured according to Figure 2, to be running on a dom0 with eight 

cores and eight GB of mem0. As a result, the logger can work with better accuracy (and can become 100%)  

and better speed compared to without pinpointing. 
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5. CONCLUSION 

An infrastructure as a service or IaaS cloud can offer virtual machines or VMs to a cloud customer. 

The VM can be used to store and operate his/her sensitive files for the business.  However, security  

is a critical issue to slow down IaaS growth.  For example, the customer worries whether an attacker  

can maliciously access the sensitive files.  A logging system that composes of a logging process (logger) 

and the log file can help in mitigating the risks associated with the issue above.  However, the accuracy of  

the logger needs to be measured and analyzed in various hardware configurations to introduce the solution to 

enhance the logger accuracy.  Thus, this paper discusses the enhancement of the accuracy of the logger.  

The enhancement is performed by using taskset tool to fix one CPU core for the logger to run.  

Then, we test the enhanced and unenhanced logger with the same experimental environment to obtain  

the results of both to be compared and analyzed.  The experimental environment is a varying method by 

increasing the number of CPU cores and the main memory or (memU) sizes of a customer VM or domU.  

We assume that a customer sensitive file is in this domU’s disk, and, an attacker may access the file. 

We found three main findings from this paper, in a varying method by increasing the CPU cores  

and memU sizes of a domU. To the best of our knowledge, there are no these three findings in the literature. 

Firstly, the accuracy of the enhanced logger is better than the unenhanced one and more stable. Secondly, 

enhanced logger accuracy becomes 100%. Also, increasing memU sizes does not affect the accuracy  

of the enhanced logger, whereas it does with the unenhanced one. Lastly, the enhanced logger can detect  

the sensitive file with the smaller file size than the unenhanced one can. Due to the performance of a logging 

system is based on the accuracy of the system (as discussed in section 2.4) and the speed of the system;  

thus, these findings successfully enhance the performance of our previous logging system. The findings can 

be a guild-line for a logging system designer to enhance his/her system. This enables the system to work 

faster or better and increases its accuracy. The findings can also help in planning to decrease hardware  

and energy investment in a cloud ecosystem. As a result, the guild-line can be one of the solutions to truly 

and sustainably mitigate risks associated with the security issue of the IaaS cloud. We also successfully 

applied the same logging system from this paper to a real-world IaaS cloud production/scenario or  

the OpenStack system environment. Thus, we believe that the measurements and the results from this paper 

can apply to a real-world scenario. Thus, the future work is to apply the guild-line from this paper to  

the OpenStack system environment.  
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