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 An ultrafast digital subscriber line (DSL) technology called G.fast  

is important for ultrafast broadband Internet access services. In G.fast,  

the existing cable bundles installed for 250 m from the distribution point  

to the customer’s premises are used to support the gigabit data transmission 

(aggregated 1 Gbit/s) for frequency up to 106 MHz or 212 MHz. Since 

unshielded cable is used, and the frequency is 12 times higher compared  

to the very high-speed DSL2 (VDSL2), it is important to investigate  

the cable performance in terms of insertion loss and crosstalk coupling.  

In this paper, the impact of cable twisting rate on 10 pairs of unshielded 

twisted-pair copper cables for a small copper bundle on insertion loss  

and crosstalk coupling is investigated. A simulation model is developed 

based on the standard cable installed in Malaysia. The model reliability  

is validated by comparing the obtained result with the published result  

in the literature. Besides, the twisting rate of 100 m cable is manipulated  

by changing its lay size to determine its impact on insertion loss  

and crosstalk coupling. The results showed that a high twisting rate can 

reduce the far-end crosstalk but increase both the insertion loss  

and near-end crosstalk. 
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1. INTRODUCTION 

In the telecommunication industry, the DSL technology via twisted-pair copper cables plays a vital 

role as an infrastructure for high-speed Internet access as well as for worldwide information technology 

connectivity, especially for suburban areas. This is because of copper cabling is cheaper compared to fiber 

and can offer fiber to the home (FTTH)-like speeds of data transmission rate [1-3]. The standardization work 

on DSL technology was initiated by the International Telecommunication Union-Telecommunication 

Standardization Sector (ITU-T) Study Group 15 (SG15) in 1998. This technology is then further improved  

to high-bit-rate DSL (HDSL) in 1998, to asymmetric DSL (ADSL) in 1999, to ADSL 2 (ADSL2) in 2002,  

to ADSL 2+ (ADSL2+) in 2003, to very high speed DSL (VDSL) in 2004, to VDSL2 in 2006, to VDSL2 

with vectoring (VDSL2 vectoring) in 2010 and the latest is ultrafast DSL called gigabit fast access  

to subscriber terminal (G.fast) in 2014 [4-6]. The evolution of DSL technology is to improve Internet access 
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mailto:saizal@uthm.edu.my


                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 9, No. 2, April 2020 :  669 – 675 

670 

services in terms of more data bandwidth as well as to support new applications such as high-definition 

television (TV) and 4K TV service.  

Basically, G.fast technology can support data transferring up to 1 Gbps that is similar to data 

transmission rate over the fiber cable (optical transmission) [7-8], the maximum bandwidth of around 106 

MHz or 212 MHz and the transmission distance up to around 250 m from the distribution point DP  

to the subscriber's premise [9-11]. In addition, this technology provides a hybrid method  

to telecommunication service operators, where the connectivity after the DP is completed by utilizing  

the existing twisted-pair copper cable that is previously used for a phone line and ADSL2+ [9]. Figure 1 

shows the target installation area of G.fast technology. Although G.fast has the capability of carrying 1 Gbps 

aggregated data [7, 9], the speed of upstream and downstream data is however highly dependent on the cable 

parameters like attenuation (insertion loss) and crosstalk coupling [10]. In general, insertion loss increases  

as either frequency or cable length increases. Crosstalk coupling among multiple unshielded twisted-pair 

copper cables in a cable bundle has been found as the most significant interference [12, 13] in VDSL2 system 

which operates with a maximum bandwidth of 30 MHz [14]. 

Since G.fast is the extended version of VDSL2 in which the bandwidth can go up to 106 MHz  

or 212 MHz, the crosstalk coupling in G.fast system is expected become the dominant interference at a 

higher frequency and for longer transmission distance over the unshielded twisted-pair copper cables [15]. 

Crosstalk coupling can be reduced by increasing the number of twist per meter [16]. Therefore,  

it is important to investigate the impact of cable twisting rate on the insertion loss and crosstalk coupling  

for unshielded twisted-pair copper cables in a cable bundle used for G.fast. Generally, the installed cable 

bundle in Malaysia for DSL technology consists of 50 pairs of unshielded twisted-pair copper cable. These 

pairs are further bundled up into 5 smaller cable bundles with 10 pairs on each bundle as shown  

in Figure 2 [9]. The characteristic impedance of the cable is 100 ohm [10].  

 

 

 

 

 

Figure 1. G.fast technology in the fiber to the home access 

network [4] 

 

Figure 2. The cross-sectional structure  

of 50 pairs in a cable bundle [9] 

 

 

In a network cable, the twisted-pair is commonly used and classified into several categories based 

on its physical structures and capabilities [17]. For example, both category 1 (CAT1) and category 7 (CAT7) 

network cables are different in terms of the number of twisting rate, the maximum data rate,  

and the operating frequency. In twisted-pair cable, twisting plays an important role in reducing the mutual 

inductive coupling and the loop area between copper cables [16, 18]. Twisting rate is commonly known  

as the lay length, which is the distance needed to complete one revolution of the strand around the diameter 

of the conductor. Theoretically, increases the number of twisting rate, decreases the crosstalk among 

 twisted-pair cables. Basically, crosstalk can be divided into two types, near-end crosstalk (NEXT)  

and far-end crosstalk (FEXT). NEXT is the noise coming from the transmitted signal that coupling between 

a transmitter of one pair and a transmitter of the adjacent pair, whereas, FEXT is the noise coupling between 

the transmitter of one pair and a receiver of the adjacent pair. FEXT is dependent on cable length, while 

NEXT is not dependent on cable length [17]. The minimum requirement of FEXT or NEXT within G.fast  

is between -4 dBm to -8 dBm [8]. On top of crosstalk, the insertion loss of the copper bundle can degrade  

the signal power as well as data transfer rate. Generally, insertion loss reduces the power of the signal  

as the length of cable increases. Furthermore, insertion loss will be increased as the frequency increased.  

In this paper, a simulation model of cable twisting rate effect on the insertion loss and crosstalk 

coupling for 10 pairs of unshielded twisted-pair copper cable in a cable bundle is presented. As can be seen  
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in Figure 1, the cable length used in G.fast technology is less than 250 m [19], therefore, the simulation  

for the cable length greater than 250 m is beyond the scope of this paper. This work is carried out to profile 

the crosstalk coupling of the existing copper bundle used for G.fast and then to investigate whether  

the twisting rate of copper cables in a cable bundle will significantly reduce the interference or not. The rest 

of this paper is organized as follows: Section 2 provides the methodology of the simulation work. Section 3 

discusses the simulation results. Finally, Section 4 summarizes the results and concludes the paper. 

 

 

2. METHODOLOGY 

2.1.  Parameters of cable modeling 

Table 1 shows the cable parameters considered in this paper. Basically, the cable modeled under 

consideration has 10 pairs which are an unshielded twisted-pair copper cable with the length of 100 meters. 

The 10 pairs are chosen in order to simulate unshielded twisted-pair copper cables for a small copper bundle 

as shown in Figure 2. A 100 m cable is chosen for the comparison purpose with the measurement result as 

published in [9]. The conductor is set to be a copper while its insulator is high-density polyethylene (HDPE). 

Since, the cable has 100 ohms of line impedance, a 100 ohms of load termination is attached at the end  

of each cable pair. In this paper, 5 different cable lays are simulated. 
 

 

Table 1. Unshielded twisted-pair cable parameters 
Parameters Value 

Number of pair 10 pairs 

Cable length 100 meter 

Cable diameter 20 mm 

Type of Insulator HDPE 

Load termination 100 ohm 

Cable lays 10 mm, 20 mm, 30 mm, 40 mm, 50 mm 

 

 

2.2.  Simulation setup and benchmarking 

The simulation results for insertion loss (IL), NEXT and FEXT are obtained by using CST Cable 

Studio based on the setup as shown in Figure 3. According to Figure 3, port 1 is assumed to be the input 

source (transmitter) and port 2 as the load (receiver). Insertion loss result is obtained by measuring the output 

side (port 2) for each pair. NEXT is the measurement on the input side (port 1) of another pair. On the other 

hand, FEXT is the measurement taken on the output side (port 2) of another pair. Termination of 100 ohms  

is used at the end of each pair.  

In order to validate the cable design, a comparison study is made for the simulated insertion loss 

result with the modeling and measurement results published in [9]. Then, to investigate the impact of twisting 

rate in 10 pairs of unshielded twisted-pair copper cables on insertion loss and crosstalk coupling for G.fast 

technology, the different cable lays as listed in Table 1 are simulated. 
 

 

 
 

Figure 3. Simulation setup for insertion loss, NEXT, and FEXT 
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3. RESULTS AND ANALYSIS 

In this section, the simulation results are presented and discussed. Figure 4 shows the cross-sectional 

structure of the cable that has been modelled in commercial software. The 10 pairs of unshielded twisted-pair 

cable were modeled with copper as the conductor and HDPE as its insulator. The outer layer of the cable  

is set to be HDPE and the air medium in between the inner and outer layer. Figure 5 shows the schematic  

of 10 pairs of cable modeled (input ports) under study in this work. The cable length is set to be 100 meters,  

and 20 ports are used and placed at the end of each cable pair. On top of that, 100 ohms is placed as the line 

impedance matching. 
 

 

 
 

Figure 4. 10 pairs of unshielded twisted-pair cable cross section 

 

 

 
 

Figure 5. 10 pairs of unshielded twisted-pair copper cables modeling 
 

 

3.1.  The insertion loss of cable with different twisting rates 

To validate the developed model, the insertion loss of standard cable design is compared  

with the published measurement results in [9]. Based on Figure 6, the simulated design is in good agreement 

for the frequency higher than 125 MHz. Then, five different cable lays configuration have been simulated 

and Figure 7 shows the insertion loss for different cable lays versus frequency. For the frequencies  

from 106 MHz to 212 MHz, the highest insertion loss is recorded for 10 mm of cable twisting rate, which is 

about 19 dB greater than 20 mm of cable twisting (a standard benchmark as gather from the result shown in 

Figure 6, which is around 28 dB). Generally, it can be concluded that in term of insertion loss, the cable does 

not perform well when the high number of twists per meter is considered. The standard cable lay length  

or cable twisting rate is 20 mm [9]. At higher frequency, increases the number of twists per meter will 

increase both the capacitance within the cable pair as well as the insertion loss. 

 

3.2.  Crosstalk of cable with different twisting rates 

In this section, the simulation results of NEXT and FEXT are presented. For NEXT, 10 mm of cable 

twisting rate records the highest crosstalk level compared to the other cable lays as depicted in Figure 8. 

These results imply that the higher the cable lay (low twisting rate) the lower the crosstalk level. Therefore, 

crosstalk due to NEXT is not critical to be solved by using a twisting rate. It can be solved by using a band 

stop filter [20-22]. Figure 9 shows the result of FEXT for different cable lay lengths versus frequency. There 

is no significant pattern can be derived from this result. However, by comparing the lay lengths from 50 mm 

to 10 mm within the bandwidth of 100 MHz to 225 MHz, it can be observed that the lowest cable lay (high 
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twisting rate) produces a low FEXT across the cable. By considering the insertion loss, NEXT and FEXT, it 

can be concluded that the twisting rate of 20 mm gives the optimum result in 10 unshielded twisted-pair 

copper cables. Increasing the number of cable lay (low twisting rate) resulting in high FEXT but low in both 

the insertion loss and NEXT [23-25]. In order to observe the impact of different transmission distances (cable 

lengths) on crosstalk coupling due to FEXT, cable lengths of 50 m, 100 m, 150 m, 200 m, and 250 m with a 

20 mm of twisting rate (standard cable lay length) are considered. It can be seen in Figure 10 that the longer 

the transmission distances or cable lengths, the higher the FEXT.  

 

 

  
  

Figure 6. Insertion loss for the standard cable versus 

frequency in comparison with the average results 

published in [9] 

Figure 7. Insertion loss for different cable lays  

versus frequency 

 

 

  
 

Figure 8. NEXT for different cable lays versus 

frequency 

 

Figure 9. FEXT for different cable lays versus 

frequency 
 

 

 
 

Figure 10. FEXT for five different cable lengths versus frequency 
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4. CONCLUSION 

In this paper, the simulation of twisting rate impact in 10 unshielded twisted-pair copper cables was 

successfully carried out. It can be concluded that increasing the number of cable lay (low twisting rate) 

resulting in high FEXT but low in both the insertion loss and NEXT, especially at high frequencies. In 

addition, increasing the cable length will increase the crosstalk coupling due to FEXT. This research is 

helpful and can be referred to as a guideline by Malaysia’s telecommunication service provider and other 

researchers for further research and development. 
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