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Many recent radar applications and smart antenna are based
on the electronically steerable beam in order to increase the performance
of targeting the desired scan angle with the high performance of gain
and directivity. Scanning angle with +26° based on Microstrip Rotman lens
and design frequency 2.45 GHz is presented in this study. Five beam ports
provide five output beams directed the beams in five different scanning
angles in the azimuth plane is provided. The traditional matching method
by tapering the transmission line in order to guarantee a smooth energy
transition from the 50 Q input ports is replaced by Defected Ground
Structure to achieve an acceptable return loss with a linear progressive phase
for each beam port. The new approach is providing increasing in the scan
angle. Besides, the size miniaturization is achieved by removing the tapering
length and reduces the total size of the lens length by 23.67 mm.

Steerable antenna The proposed model is implemented using Computer Simulation Technology
(CST) wusing the FR-4 substrate and the measurements lead

to a good validation.
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1. INTRODUCTION

Compactness and power loss are considered the main factors design in the modern wireless
communications system. Besides, the smartness is considered the key technology of the recent wireless
communication system while the beamforming technique is a cornerstone of the antenna to be smarter
to direct the beam towards the desired angles in order to work in a high-quality environment and increase
the data capacity limit [1-5]. The need for a fasting scanning area by forming an electromagnetic beam
is encouraged many researchers to invent radar system based on the electric steerable to eliminate the use
of the mechanical movement of the array antenna such as Butler matrix and Blass matrix are the most earlier
microwave circuit considered as beamforming network BFNs. However, the design complexity
and the shifting beam based on the frequency changing is the most disadvantaged of these techniques [6].

W. Rotman introduced a technique based on the optical theory in order to provide a progressive
linear phase shift from the input port to feed the array antenna to form the beam in the required angle
by using lens [7]. Rotman lens is a beamforming network based on the path length difference to introduce
a phase shift for each input beam. Besides, this property of the lens to provide the linear phase shift introduce
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it as a true time delay microwave circuit because the beam shifting is required only a single frequency.
Furthermore, easy to fabricate in microstrip model, compactness, less complexity compared with other BFNs
are the main properties of the Rotman lens. Numerous civilian and military sensing applications depend
on the Rotman lens to direct the radiation beam scan angle such as sensing of the automotive platform [8],
radar system [9] and satellite communication [10].

This study will be divided into two main sections. The first section will be introducing the design
implementation of the Rotman lens to provide +£26° scanning angle with center frequency 2.45 GHz
Industrial, Scientific, and Medical (ISM) radio band. While the second section will cover the techniques
are used for matching the impedance between the input beam ports and the lens cavity. Furthermore,
the impedance matching using defected ground structure (DGS) and its effect on the lens performance will
be implemented and explained. Finally, the comparison between two approaches in terms of return loss,
and size reduction will be introduced. Generally, Rotman lens is a multi-ports microwave circuit constructed
from the optical theory, the construction of the design is based on the determination of the locations
for the beam ports, receive ports and the array antenna elements beside the length of the transmission lines
which are connected between receive ports and antenna array as explained in Figure 1.

Beam Ports | Transmission Line |

Beam contour | | Lens cavity | | Recieve contour | | Antenna elements

Figure 1. Rotman lens geometry [7]

Beam ports are input ports for the lens cavity in which the excitation frequency will be applied
and directed to the lens cavity. Then, the lens cavity will forward the exciting energy to word the receive
ports. On the other side, the antenna array will be fed through the transmission lines. While the sides-walls
of the lens will be terminated by the dummy ports connected with matched 50 Q loads in order to absorb
the incident reflections and save the phase performance inside the lens cavity.

2. ROTMAN LENS DESIGN PROCEDURES

The concept of the beamforming techniques is based on providing a linear phase shifting to feed
the array of the antenna. The value of the phase shift linearity is related to the scan angle of the out beam [6].
Rotman lens is a microwave multi ports structure. Its formulation provides a path length delay for input port
different from the other beam ports based on the location of the input beam ports, receive ports and the length
of the transmission line. Three beam focal points are located in the beam contour (Fi1, F2, and F3) provides
theoretically zero phase error with the subtended angle o. In practical, more than three focal points
are needed to provide a multi-switching beam at different angles, these non-focal points generate a phase
error, besides the beam contour, can be circular or elliptically shape [11]. The receive points are located
on the receiving contour at (X, Y) coordinate. While the antenna elements fed using these receive points
by the connected transmission lines with length W. It can be noticed that the length of the transmission line
saves the phase-shifting provided to the array elements. The antennas arrays are placed at the lens aperture
at locations Y3 with adjacent distance d, which has the main control contribution of the sidelobe level
for the radiation pattern [11].

The lens design materials permittivity can be modeled using the homogenous material
in the for the lens cavity & and transmission lines ¢. or inhomogeneous materials in order to enhance
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the performance of the lens such as low loss graded materials [12]. On the other hand, ports with 50 Q loads
will be terminated the sides of the lens cavity in order to absorb the incident energy and reduce the inside
reflections which decrease the phase quality reached to the radiator elements. The formulation design
equations of the lens can be derived according to the optical theory by equalizing the path from the focal
points to the lens aperture as reported in [13]. Where the focal length f; has a direct impact on lens
dimensions generally and especially to the operation bandwidth as compared these results to the work
reported in [14]. Furthermore, the full structure of the microstrip lens model will include the tapering line
in order to achieve an impedance matching between the lens cavity and the 50 Q transmission line
impedance. While in this study Defected Ground Structure (DGS) will be used to achieve the impedance
matching as it will be explained in the final sections of this work.

3. IMPLEMENTATION ANALYSIS AND RESULTS

This section will be classified into two subsections. In the first section, the lens geometry will be
determined besides the final prototypes of the lens including the tapering line will be introduced.
While, the second section, the impedance matching between 50 Q beam ports and lens cavity will be
explained. On the other hand, the suggested approach for the impedance matching using defected ground
structure will be implemented and discussed. The simulation will be carried out using CST
Microwave Studio.

3.1. Lens implementation using tapering line

A microstrip lens will be implemented in this section. Besides, design specifications are proposed
as Table 1 explained. The beam contour and the receive contour besides the coordinate for the locations
of the ports are determined by solving the design of the equations for the given variables as Figure 2(a)
explained. Then, the full lens geometry including the tapering line, dummy ports at the sides-walls
and transmissions lines are explained in Figure 2(b). While the full ground plane is used in this design.
The tapering line for impedance matching between transmission lines and the lens cavity is based on the
gradual transition impedance between the high impedance transmission lines with 50 Q and the unknown low
impedance for the lens cavity. The challenge in the matching determination is to find a suitable taper length
by an optimization process. However, the optimization is used because of the difficulty to determine the
exact impedance for the lens cavity due to its non-uniform shape. While, in the uniform transmission line, the
impedance can be determined in order to find the exact taper length for matching [15, 16].

Table 1. Lens design parameters

Design variable value Design variable value Design variable value
No. of beam ports 5 scan angle o +26° focal length f; 1.45 )
No. of antenna ports 4 relative permittivity e 4 displacement distance d 0.43 %
No. of dummy ports 8 loss tangent 0.025 substrate thickness 1.565 mm
center frequency 2.45 GHz copper thickness 0.035 mm width *length 197.21*211.08 mm
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Figure 2. Lens configuration, (a) Lens contours, (b) Lens geometry CST model
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In the lens geometry, it obvious that each beam port has different taper length in order to yield
an acceptable return loss according to its location on other terms impedance value, for example, port one
length is 16.98 mm and the length of port two and three 17.49 mm, and 17.54 mm respectively.
While the input impedance for the taper line is 50 Q; on the other terms the calculated width
for the transmission line with FR-4 substrate material permittivity and thickness 1.565 mm is 3.21 mm.
The return loss simulation results for the beam ports are carried out using CST Microwave Studio
with explained frequency range as shown in Figure 3(a).

It can be concluded from the return loss results that the minimum bandwidth of the beam port
is 990 MHz with minimum return loss for the port two with -39.24 dB while port three has the maximum
return loss with -19.7 dB at the design frequency 2.45 GHz. The surface current distribution for the port three
excited by 2.45 GHz and all the other ports are loaded with 50 Q load is shown in Figure 3(b).
Hence, a circular phase performance distribution inside the lens cavity can be indicated without distortion
from the excited port three. On the other hand, the dummy ports absorb the incident energy from sidewalls
without reflections. Array elements will be connected to the lens in order to detect the radiation pattern
performance and scan angle. The full geometry model for the lens and the antenna elements
is shown in Figure 4(a).

While the simulated results for the radiation pattern when the excitation is applied for each beam
ports separately with 2.45 GHz are explained in Figure 4(b). The switching radiation pattern takes a place
at the 26°, 13° 0°, -13°, -26° angles according to the excitation ports (1-5) respectively. In the following
section, the defected ground structure (DGS) will be proposed in order to match the impedance between
the beam ports and the lens cavity. The effect of DGS on the phase performance and the radiation pattern
besides the matching process will be discussed.
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Figure 3. Lens performance, (a) Return loss for beam ports, (b) Surface current distribution
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Figure 4. Beamforming system configurations, (a) Lens and array elements,
(b) Radiation pattern at 2.45 GHz

3.2. Defected ground structure implementation with lens

An embedded defected shape in the ground plane of the microstrip circuit has the ability to modify
the inductance and capacitance values of the specified location [17]. The first 1-D first DGS was proposed by
K-Chul-Soo in order to enhance the effective inductance to control the cut off frequency in 2000 [18].
Compactness, low profile, easy to fabricate and simplicity in design make much modern wireless
communication applications use the technique of DGS. Bandwidth enhancement, impedance matching,
mutual coupling between adjacent transmission lines, suppression harmonic, cross-polarization in microstrip
antenna and control the band stop of microstrip filters are application areas of DGS for the wireless
systems [19-24]. There are many microstrip antennas and microwave circuit use DGS for impedance
matching. However, the difficulty to apply DGS to match the 50 Q beam ports line to the lens cavity can be
summarized into three problems; the first side of the problem is the unknown impedance of the lens cavity
that leads to difficulty for constructing the equivalent circuit. While the second problem is the adjacency
of the ports which increases the difficulty because of the effect of applying DGS to a single port will modify
characteristics for the neighbor ports. Finally, the third problem is occurred due to the ability of the DGS
to change the value of the capacitance and inductance when it is applied under the microstrip line, it has a
direct impact on the phase performance as a result of applying such as overlapping phase and distortion phase
will change the linearity phase shift of the beam ports achieved by the lens design theory which is the main
aim of lens to direct the output beam in the desired angle. However, there are many advantages to finding
a suitable DGS to match beam ports with lens cavity, for example, provide the compactness and size
reduction of the lens as a result of removing the taper transmission line length used for the traditional
matching technique. In addition, the scanning angle of the beam will be increased as an outcome for DGS
effectiveness to increase the phase shift to the coupling phase reached to receive ports as the next
section will explain.

Accordingly, this section is aimed is to explain a method to balance impedance for the beam ports
transmission line which has 50 Q and the low impedance for the lens cavity. Many DGS configurations
are used in microwave circuit applications such as dumbbell shape [18] H shaped, spiral-shaped [25]
and V shape [26]. Therefore, it can be concluded that most of the microwave circuits need a unique design
depends on the desired applications and aim to be achieved by applying DGS. Consequently, DGS can be
proposed under the lens cavity. As the first step of design, it can be determined that the impedance
of the beam ports transmission lines is higher than the lens cavity because of the large area of the lens
compared with the transmission lines. Therefore, it is required to increase the impedance of the lens cavity in
order to match it with transmission lines impedance. Hence, the location of the DGS will be applied inside
the lens cavity which will introduce a challenge to find the appropriate configuration to save the phase
performance further balance the impedance. Dumbbell, H shaped and U shaped geometries are considered
a superior impact in many microwave circuit [19]. However, it cannot use for the lens due to the phase
distortion effect. Therefore, a new DGS configuration geometry was proposed in this study in order
to achieve an acceptable matching result further saving phase performance as explained in Figure 5.

Depending on the surface current distribution and optimization results the proposed geometry can be
applied underneath the lens geometry. The transmission line length L, width of the transmission line H,
curve width R and the circle diameter are the parameters to be considered for the proposed DGS geometry.
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Besides, the location of the DGS and the distance between the centers of the transmission line L
has an impact to control the effect of the DGS to the phase and the impedance matching.

Figure 5. Proposed DGS model geometry

In the following, lens geometry after removing tapering transmission lines from the beam ports
besides the defected are designed and applied on the ground plane are explained. It can be noticed that from
Figure 6(a) that a section with a width equal to the beam port aperture and length A is applied to the lens
geometry in order to achieve two goals. The first goal is to increase the isolation between adjacent beam
ports and the second goal is to increase the ability of the non-excited ports to absorb the reflected energy
wave and save phase performance. While the ground planes including defected configurations are shown in
Figure 6(b). Thus, lens length decreased as a result of removing the tapering line by 23.67 mm.
Moreover, the defected model position related to the beam ports is explained in Figure 6(c) by hiding
the substrate geometry.
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Figure 6. Lens with DGS, (a) Lens without beam ports tapering, (b) The defected ground plane,
(c) Defected ground front view

It is obvious that the large area of the lens cavity has low impedance compared with the 50 Q
transmission line. Therefore, defected will be applied to the lens cavity in order to increase low impedance
to match it with transmission line impedance. An optimization process is carried out in order to fit
the defected dimensions and achieve acceptable return loss beside save phase performance. The fabrication
process was carried out in order to test the performance of the proposed model as explained in Figure 7.

The proposed lens model front view is described in Figure 7(a) furthermore the defected model in
the ground is explained in Figure 7(b). In order to measure the performance of the return loss, a vector
network analyzer will be connected to the port input port of the lens. While the other ports of the lens will be
connected to 50Q loads in order to reduce the unwanted energy reflections and provided an impedance
matching connection to the all received ports. On the other hand, return loss comparison between the full
ground and defected ground simulation results for the beam ports are explained in Figure 8(a).
While the return loss measurement compared with the CST Microwave Studio simulation
is explained in Figure 8(b).

A Return loss measurement for the beam ports is carried out by manual switching the applied
excitation with an explained range of frequency. Meanwhile, loads with 50 Q are connected to the other lens
ports when each port is excited in order to reduce reflections that will occur from the non-excited ports.
For the selected beam ports; port one, port two and port three the return loss measurements are explained
a good validation compared with simulated calculated results using CST microwave studio. As a result
of the applying defect on the ground plane, the total length of the model is decreased. Furthermore,
return loss at 2.45 GHz for port 3 is better than the taper line model with enhancement equal to 19.28 dB.
While the bandwidth is decreased for all ports for the defected ground model as explained in Table 2.
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Figure 8. Return loss comparison, (a) Simulation of full and defected ground,
(b) Simulation and measurements of DGS model

Table 2. Return loss at 2.45 GHz and bandwidth (BW) comparison
Beam port  Full ground return loss (dB)  DGS return loss (dB)  Full ground (BW) (MHz)  DGS (BW) (MHz)

Port 1 -47.72 -38.31 1672 836
Port 2 -39.24 -39.68 990 728
Port 3 -19.58 -38.86 1220 672

In addition, the radiation pattern simulation results after array elements connected to the lens for five
beam ports at 2.45 GHz are shown in Figure 9. A good agreement between simulation results using CST
Microwave Studio and the measurements for radiation pattern is obtained. As a result of applying defected on
the ground plane increasing in the beam scan angle 13°, 26° to 16° and 29° respectively for beam port one
and port two can be realized because of the slow-wave propagation introduced by defected ground which
adds an additional shift to the phase reached to the receive ports.
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Figure 9. Radiation pattern for beam ports
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4. CONCLUSION

Microstrip Rotman lens has been designed and implemented to work with a center frequency of 2.45
GHz. The tapering line matching technique was explained and implemented to provide matching between the
lens and 50 Q ports. A new approach based on the defected ground structure was proposed in order to
balance matching between ports and lens. As a result of the defected ground miniaturizing in the length of the
designed lens was achieved with 23.67 mm. Further, increasing the scan angle for beam ports was obtained
by 3° for beam port 2 and 3° for beam port 1. However, bandwidth is decreased as a result of applying
defected on the ground plane for beam ports with average value 482 MHz Furthermore; measurements are
led to a good validation for the proposed simulation model.
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