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 A common limitation of the previous comparative studies on speaker-features 

extraction techniques lies in the fact that the comparison is done 

independently of the used speaker modeling technique and its parameters. 

The aim of the present paper is twofold. Firstly, it aims to review the most 

significant advancements in feature extraction techniques used for automatic 

speaker recognition. Secondly, it seeks to evaluate and compare the currently 

dominant ones using an objective comparison methodology that overcomes 

the various limitations and drawbacks of the previous comparative studies. 

The results of the carried out experiments underlines the importance of the 

proposed comparison methodology. 
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1. INTRODUCTION  

Like the majority of biometric systems, contemporary speaker recognition systems are composed of 

two main building components: The feature extraction component and the speaker modeling & scoring 

component. The feature extraction component involves the processing of speech signal and the extraction of 

speaker-specific and discriminative characteristics as shown in Figure 1. The modeling & scoring block aims 

to train a reference model for each client speaker on the basis of its extracted features, as well as, to score the 

test utterances [1, 2].  

The speaker features are usually categorized, as shown in Figure 2, into low-level and high-level 

features. The low-level features, also known as physical features, include the features influenced by the 

physical structure of the speaker’s vocal tract. On the other hand, high-level features, also known as 

behavioral features, comprise the features influenced by the speaker’s behavioral characteristics [3, 4]. 

Typically, high-level features are often used just as complementary features to the low-level features. In this 

study, we focus only on the low-level features (physical features) [5].  

Although the performance of feature extraction techniques depend mainly on how the extracted 

features are modeled, the overall previous comparative studies on features extraction techniques were carried 

out independently of the used speaker modeling technique, neither its parameters (see the literature review in 

section two). With this in mind, the present paper aims firstly to review the most significant advancements in 

feature extraction techniques used for automatic speaker recognition. Secondly, it seeks to evaluate and 

compare the currently dominant ones using an objective comparison methodology that overcome the 

limitation of the previous studies. 

https://creativecommons.org/licenses/by-sa/4.0/
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Figure 1. The two main categories of speaker features 

 

 

 
 

Figure 2. The two main blocks of speaker recognition systems 

 

 

The remainder of this paper is organized as follows. The second section presents a concise literature 

review of the most significant advancements in feature extraction techniques. Next, the outlines  

of the proposed comparison methodology are summarized in the third section. Afterward, the experiments are 

reported and discussed in the fourth section. Finally, conclusions and future research directions are drawn in 

the last section. 

 

 

2. LITERATURE REVIEW 

The earlier low-level features used for speaker recognition systems were firstly, as shown in  

Figure 3, based on spectral energy patterns [6, 7]. Further, an improved features have been proposed based on 

the variance analysis of the spectral energy patterns [8]. Later on, fast fourier transform (FFT)-based cepstral 

coefficients were presented and yielded good performance, confirming their usefulness for speaker 

recognition. In 1974, the concept of linear prediction was introduced for speaker recognition tasks [9]. 

Instead of being used by themselves, the linear prediction coefficients were transformed into a set of robust, 

less correlated features such as, the linear prediction cepstral coefficients “LPCCs” [9], the perceptual linear 

prediction coefficients “PLP” [10], the perceptual linear predictive cepstral coefficients “PLPCC” [11-15] 

and the line spectral frequencies “LSF” [16] etc. In early 1980s, the so-called Mel-frequency cepstral 

coefficients “MFCCs” were introduced and yielded the best results compared to contemporary used features 

for speaker recognition [5, 11]. One year later, the concept of dynamic features has been introduced to 

incorporate some temporal information to the extracted features [16, 17]. Later on, seen that the original idea 

of Davis and Mermelstein does not provide an explanation about the choice of several parameters within the 

calculation process of the MFCCs, a numerous variations and improvements of the original proposed idea 

have been proposed in the literature [13, 15, 18, 19]. Furthermore, a number of discrete wavelet packet  

transform (DWPT)-based features have been proposed for speech and speaker verification systems [20, 21].  

On another side, several features have been proposed for speaker recognition in specific  

scenarios [22]. Some of them have been proposed for noisy scenarios, such as minimum variance distortion 

less response features “MVDR” [23, 24], mean Hilbert envelope coefficients “MHEC” [25, 26], medium 

duration modulation cepstrum “MDMC” [27], and power normalized cepstral coefficients “PNCC” [28]. 

Some others have been proposed for reverberant scenarios, such as the frequency domain linear prediction 

features “FDLP” [29, 30]. Others been proposed to address the feature distribution distortion caused by 

transmission channel effects, such as the multitaper MFCC features [31, 32]. Recently, the gammatone 
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frequency cepstral coefficients (GFCC) were proposed and achieved a promising recognition performance in 

some speaker recognition applications compared to the Mel-frequency cepstral coefficients, especially in 

noisy acoustical environment [33–39].  

 

 

 
 

Figure 3. Timeline view of the most significant developments in features extraction techniques 

 

 

The multiplicity and diversity of the proposed feature extraction techniques raised the necessity of 

directly comparing them in a common experimental setup. Accordingly, several comparative studies were 

therefore conducted to assess the performance of the different proposed features extraction techniques.  

In [12], a comparative study of various features (MFCC, LFCC, LPCC and PLPC features) have been 

conducted under a GMM-based speaker identification system of 32 Gaussian components. The findings of 

the study reported somewhat better performance of the MFCC and LPCC features than the other features. On 

similar lines, several feature extraction techniques (LPC, LPCC, the standard MFCC features and its recent 

variant, commonly known as the human factor cepstral coefficients “HFCC”) were evaluated and compared 

under a ANN-based speaker identification system [40]. The reported results confirmed the superior 

performance of the MFCC features compared to the LPC and LPCC features. Later on, Ganchev and his 

colleagues were conducted a comparative study of the most popular variants of the MFCC features for 

speaker verification using a probabilistic neural network based system [14]. The obtained results revealed 

that the most successful variant was the Slaney’s variant [19]. On the other hand, several features have been 

assessed and evaluated in specific scenarios. Senthil and Dandapat have compared several speech features 

(MFCC, LPC, LPCC …) for both speaker verification and identification under stressed condition [41].  

The comparison was done under tow systems: a sixteen-order GMM based speaker recognition system and a 

VQ based system using sixteen-codeword codebook. The finding of the study revealed that the MFCC 

features still outperforms the others features in stressed condition. The reported results revealed that the 

MFCC features still outperform the other features, even in stressed conditions. In a further study [42], the 

MFCC and the LPCC futures were also assessed in speech resynthesized conditions. The assessment was 

done using a GMM-UBM based speaker verification system of 128 Gaussians. The authors concluded that 

the MFCC features remain the best choice for speaker recognition in both clean and resynthesized conditions. 

Conversely, it was shown in noisy conditions that the recognition performance using the MFCC features 

degrades significantly compared to the system performance using the GFCC features [43]. 

 

 

3. TOWARDS AN OBJECTIVE COMPARISON METHODOLOGY OF SPEAKER FEATURES 

The adopted comparison methodology in the previously mentioned comparative studies consists in 

comparing the obtained performance in each feature extraction technique using the same speaker modeling 

technique and the same modeling parameters in most of them. In other words, the followed methodology 

consists in comparing the corresponding system-performances of the feature extraction techniques 

independently on the used modeling technique and its parameters. However, the system performance depends 

on both the robustness of the extracted features and the manner in which they are modeled. By way  

of illustration, a feature extraction technique based on a filter-bank of many filters tends to produce many 

acoustic classes that require many Gaussians components to model them perfectly, and vice versa. 

Additionally, a feature extraction technique may give the better performances in conjunction with some 

speaker modeling techniques and relatively decreased performance than the other feature extraction 
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techniques when using other speaker modeling techniques. Moreover, a feature extraction technique with an 

appropriate modeling could possibly give the best performance within a segment of speakers, whilst in 

another segment of speakers, its performance mightn't be the best using the previously selected modeling 

parameters.  

Taking into account these considerations and assumptions, we suggest an objective methodology for 

comparing feature extraction techniques in speaker recognition systems. The outlines of the proposed 

methodology can be summarized as follows: (1) the performance of feature extraction techniques should be 

assessed in conjunction with several speaker modeling techniques, (2) the produced features through each 

feature extraction technique must be modeled using the appropriate modeling parameters and, finally, (3)  

The comparison process has to be done by means of a cross-validation strategy. 

Acting on this methodology, we have conducted a comparative study on the most popular variants 

of traditional MFCC features, the recently introduced GFCC features, as well as, on their corresponding 

dynamic features. The comparison of those techniques is done in conjunction with the most three widely used 

speaker modeling techniques in the speaker recognition community: (1) the GMM-UBM, (2) the hybrid 

GSV-SVM and (3) the state of art i-vectors/CSS based speaker-modeling techniques. Furthermore,  

the extracted features of each feature extraction technique are modeled using the most appropriate modeling 

parameters pertaining to the used modeling technique. Moreover, the evaluation procedure was done through 

two experiment series: the first series attempts to compare the different features extraction techniques  

on the overall evaluation dataset using the most appropriate modeling parameters, whereas the second series 

aims to assess their performances through cross-validation strategy (see the experimental protocol). During 

this study, our focus is put on the traditional and the widely used MFCC features, the recently introduced 

GFCC features, as well as, on their corresponding dynamic features [44-46]. 

 

 

4. EXPERIMENTS, RESULTS AND DISCUSSION 

4.1. The experimental protocol 

The performed experiments in this study were conducted on the THUYG-20 SRE database [47]. In 

the training phase, the whole THUYG-20-SRE’s development-set is used for training the system hyper-

parameters (UBM, TVM …), whereas in the enrolment phase of the system, one minute of active speech per 

speaker is used for the building the speaker’s models. In the testing phase, the client speakers are tested 

against each other, resulting in total of 5862 target and 891024 impostor trials of 4 seconds and 2886 target 

and 438672 impostor trials of 8 seconds. The MFCCs features are pre-processed as follows. The emphasizing 

step is firstly performed using a simple first order digital filter with transfer function H(z)=1-0.95z. Next,  

the emphasized speech signal is blocked into Hamming-windowed frames of 25 ms (400 samples) in length 

with 10 ms (160 samples) overlap between any two adjacent frames [5, 48, 49]. As regards the GFCCs,  

the features are extracted using a filter bank of 64 Gammatone filters and a down sampling frequency  

of 100 Hz (yielding frame rate of 10 ms), as recommended by [36]. The performance of the system  

is measured in the first experiment series using the equal error rate (EER) values, whereas in the second 

experiment series where a pre-adjusted threshold is fixed, the verification performance of the system  

is assessed using the half total error rate (HTER) values. Besides, the verification threshold is adjusted  

to the EER point where the false rejection and the false acceptance rates are equal. 

The performed experiments in this paper were divided into two series. The experiments of the first 

series were carried out on the overall evaluation dataset using the most appropriate modeling parameters 

(model size, relevance factor …), whereas the experiments belonging to the second series were performed 

through a 2-fold cross-validation strategy. The specifics of the cross-validation strategy are as follows. 

Firstly, the client speakers of the evaluation dataset are divided into two roughly equal-sized sets, say    and 

  . Next, the first dataset    is used to estimate the appropriate modeling parameters and the verification 

threshold, whereas the other dataset    is used to evaluate the system performance based on the previously 

estimated modeling parameters and verification threshold (Scenario I). Afterwards, the two datasets alternate 

their roles and the second dataset    is therefore used for estimating the modeling parameters and the 

verification threshold, whilst the dataset   is used to evaluate the system performance (Scenario II). Finally, 

the obtained results in the two scenarios are averaged out. The most appropriate modeling parameters of each 

speaker modeling technique are selected through an exhaustive grid search over the followings typical values: 

 The UBM size (GMM-UBM, GSV-SVM, i-vectors): 32, 64, 128, 256, 512 and 1024. 

 The MAP relevance factor (GMM-UBM, GSV-SVM): 0, 4, 8, 12, 16 and 20. 

 The dimension of the total variability matrix (TVM): 200, 400 and 600. 

 The optimal N° of iterations used for TVM training (i-vectors): 1, 2, 3, …, 20. 

 The dimension of the PLDA speaker subspace (i-vectors): 400, 800, 1200, 1600 and 2000. 
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4.2. The first experiment series 

The obtained results in the first experiment series for speaker verification and identification tasks are 

shown in Figure 4. Primarily, the findings revealed that best performances across the various used  

speaker-modeling techniques were achieved in the both tasks using the HTK’s variant of the MFCC features. 

Furthermore, it can be seen that the overall MFCCs variants demonstrates better performances than  

the GFCC features, regardless of the used speaker modeling technique. Surprisingly, the obtained results 

indicate also that the combination of the static and dynamic features doesn’t bring any gain in performance 

compared to the obtained results using the static features only. Quite the contrary, the results show that the 

system performance is degraded when the static features are combined with their respective dynamic ones.  
 
 

 
 

Figure 4. The obtained EERs across the various features extraction and speaker modeling techniques 

(verification task), the upper and bottom bar charts reflect the obtained EERs using test utterances of 4s  

and 8s, respectively, the left bar charts represent the obtained EERs using the static features only, whereas  

the right bar charts represent the obtained EERs using a combination of the static features with their 

corresponding dynamic features 
 

 

On another side, although the best performances of the various features extraction techniques were 

obtained mostly in association with the GSV-SVM based speaker modeling technique, it can be noticed that 

the choice of the speaker modeling technique influences on the relative performance of each feature 

extraction technique compared to the others. The exhibited results demonstrate also that the increase  

in the test-utterances’ duration is translated into an increase in the recognition performance of the system. 

Accurately, it seems that the amount of the achieved performance gain depends mainly on the used speaker 

modeling technique. In an attempt to underline this observation, we have computed the relative error 

reduction rates obtained through the increase of the test utterances from 4s to 8s, for instance, from the 

obtained results using static features and test utterances of 4s. The obtained results are reported in Table 1.  

The results revealed that the achieved gain in performance using the i-vectors-CSS based speaker 

modeling technique is greater than that achieved using the GSV-SVM based speaker modeling technique by 

roughly 24 and 13 percent, as well as, greater too than the gain achieved using the GMM-UBM based 

speaker modeling technique by roughly 133 percent. As regards the feature extraction techniques, it can be 

seen that the amount of the test duration doesn’t have a great influence on the relative performance  

of the various features extraction techniques. 
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Table 1. The relative EER reduction rates obtained through the increase of the test utterances  

from 4 to 8 seconds 
 MFCCs-HTK MFCCs-DM MFCCs-Slaney HFCCs GFCCs 

GMM-UBM 11.16 % 12.55 % 11.94 % 12.59 % 12.17 % 

GMM-SVM 21.16 % 24.00 % 11.94 % 20.52 % 25.44 % 

I-vectors-CSS 31.56 % 26.44 % 28.29 % 25.16 % 29.34 % 
Means 11.16 % 12.55 % 11.94 % 12.59 % 12.17 % 

 

 

The selected modeling parameters for each feature extraction technique in each speaker modeling 

technique are shown in Table 2. The most important result to emerge from the table is that the various 

features extraction techniques don’t share the same modeling parameters in each speaker modeling technique. 

Additionally, it can be noticed that there is such relation between the design of the used filter-bank  

(the shape, the number of filters …) in each feature extraction technique, the number of Gaussian  

and the relevance factor used for speaker modeling. Except the GFCC features and the HFCC features where 

the filters that compose the filter-bank are more interfered, it can be remarked more precisely that the greater 

the number of used filters, the greater the number of Gaussian components required or the lower  

the relevance factor (i.e. the higher the influence of the training speech data on the adapted models) is. 

 

 

Table 2. The selected modeling parameters for each feature extraction technique/modeling technique 

 
GMM-UBM GSV-SVM ivectors-CSS 

GMM sizes Relevance factors GMM sizes Relevance factors GMM sizes Number of iterations 
GFCCs 512 12 1024 0 1024 2 
HFCCs 512 4 512 4 1024 3 

MFCCs-HTK 1024 8 1024 8 512 3 
MFCCs-Slaney 1024 4 1024 4 1024 4 

MFCCs-DM 128 0 256 4 256 1 

 

 

4.3. The second experiment series 

The obtained results in the second experiment series are shown in Table ‎3. The results are 

expressed as means and variances of the obtained performances in the two cross-validation scenarios.  

The average values represent the system performance, whereas the variance values reflect the performance 

variability across speakers segments. The findings revealed that the best performances, i.e. lower average 

values of the HTER and IER metrics, were obtained using the HTK’s MFCC features together with  

the GSV-SVM based speaker modeling technique. 

 

 

Table 3. The means and variances of the obtained HTERs in the two scenarios of the cross-validation based 

evaluation strategy (Using static features only and both 4s and 8s-test-utterances) 
 GMM-UBM GSV-SVM ivectors-CSS 

GFCCs 
  2.89 11.24 3.24 

   0.003 156.5 0.080 

HFCCs 
  2.56 2.36 3.54 

   0.003 0.005 0.708 

MFCCs-HTK 
  2.40 2.14 3.50 

   0.000 0.001 2.531 

MFCCs-Slaney 
  2.63 2.54 3.27 

   0.186 0.036 0.744 

MFCCs-DM 
  2.87 2.17 3.88 

   0.238 0.048 2.856 

 

 

Additionally, it can be seen more clearly that the used speaker modeling technique has a significant 

influence on the relative performances of the various features extraction technique. As an illustration, it can 

be seen that the GFCC features yielded concurrently the best and the worst verification performances, 

depending upon the used speaker modeling technique. By using the i-vectors based speaker modeling 

technique, it can be seen that the GFCC features demonstrate the best verification performance. Conversely, 

the GFCC features give the worst verification performance when using the GMM-UBM based speaker 

modeling technique.  
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5. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

In this paper, an objective comparison methodology was proposed and applied for the comparison of 

the currently dominant feature extraction techniques in automatic speaker recognition systems, namely the 

most popular variants of traditional MFCC features, the recently introduced GFCC features, as well as, their 

corresponding dynamic features. The findings of the study can be summarized in two main points. On the 

one hand, the obtained results throughout the study underlined the importance of the proposed methodology. 

On the other hand, it has been shown using the proposed methodology that the best performances were 

obtained using the HTK’s MFFC variant. 
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