ISSN: 2302-9285, DOI: 10.11591/eei.v9i1.1664

Dynamic economic emission dispatch using ant lion optimization

Hardiansyah Hardiansyah

Department of Electrical Engineering, Tanjungpura University, Indonesia

Article Info

Article history:

Received Jun 24, 2019 Revised Aug 31, 2019 Accepted Sep 26, 2019

Keywords:

Ant lion optimization Dynamic economic emission dispatch Prohibited operating zones Ramp rate limits Valve-point effects

ABSTRACT

This paper aims to propose a new meta-heuristic search algorithm, called Ant Lion Optimization (ALO). The ALO is a newly developed population-based search algorithm inspired hunting mechanism of ant lions. The proposed algorithm is presented to solve the dynamic economic emission dispatch (DEED) problem with considering the generator constraints such as ramp rate limits, valve-point effects, prohibited operating zones and transmission loss. The 5-unit generation system for a 24 h time interval has been taken to validate the efficiency of the proposed algorithm. Simulation results clearly show that the proposed method outperforms in terms of solution quality when compared with the other optimization algorithms reported in the literature.

This is an open access article under the <u>CC BY-SA</u> license.

12

Corresponding Author:

Hardiansyah Hardiansyah, Department of Electrical Engineering, Tanjungpura University, Jln. Ahmad Yani, Pontianak 78124, Indonesia. Email: hardi_eka@yahoo.com

1. INTRODUCTION

The Dynamic Economic Dispatch (DED) formulation allows for a more advanced treatment of the Economic Dispatch (ED) problem. The additional of certain periods of time in which the traditional economic dispatch is scheduled and operated, and the variation of the load demands over this period of time, have made the DED a more realistic representation of real conditions. The fundamental goal of dynamic economic dispatch problem of electric power generation is to schedule the committed generating unit outputs in order to meet the predicted load demand with minimum operating cost, while satisfying all system equality and inequality constraints. Therefore, the DED problem is a very restricted large-scale nonlinear optimization problem [1, 2]. The presence of the valve-point effect results ripples in the heat-rate curves so that the objective function becomes non-convex, discontinuous, and with multiple minima [3-6]. The fuel cost function with valve-point effects in the generating units is the accurate model of the DED problem [7-9].

Currently strategically utilizing available resources and achieving electricity at bargain prices without sacrificing social benefits is of utmost importance. The environmental pollution plays a major role as it had a major threat on the human society. Hence, it became compulsory to deliver electricity at a minimum cost as well as to maintain minimum level of emissions. The lowest emissions are considered as one of the goals in combined economic and emission dispatch problems, along with economic costs. Atmospheric pollution due to release of gases such as nitrogen oxides (NO_X), carbon dioxide (CO₂), and sulphur oxides (SO_X) into atmosphere by fossil-fuel based thermal power plant affects not only humans but also other forms of life such as birds, animals, plants and fish, while causes global warming too [10-14].

The emission dispatch is a short-term alternative that should be optimized, besides fuel cost goals. Thus, DEED problem can be handled as a multi-objective optimization problem and requires only small

modification to include emission. Therefore, the DEED problem can be converted into a single objective problem by linear combination of various objectives using different weights. The important characteristic of the weighted sum method is that different pareto-optimal solutions can be obtained by varying the weights [15]. The static economic dispatch problem with considering valve-point effects and prohibited operating zones have been solved in [16-18]. A number of reported works has considered the prohibited operating zones in DED problem [19-22], however, the emission has not considered in these papers.

Recently, a novel nature inspired algorithm, called Ant Lion Optimization (ALO) [23], has been developed by Mirjalili. In this paper, the ALO algorithm has been used to solve the DEED problem considering ramp rate limits, valve-point effects, prohibited operating zones, and transmission loss. The effectiveness of the proposed method has been demonstrated on 5-unit generation system and than compared with other optimization results reported in literature.

2. PROBLEM FORMULATION

The purpose of DEED problem is to find the optimal schedule of output powers of online generating units with predicted power demands over a certain period of time to meet the power demand at minimum both operating cost and emission simultaneously.

The objective function of the DEED problem can be formulated as follow:

$$F_{T} = w_{1} * \sum_{t=1}^{T} \sum_{i=1}^{N} F_{i,t}(P_{i,t}) + w_{2} * h * \sum_{t=1}^{T} \sum_{i=1}^{N} E_{i,t}(P_{i,t})$$
for $i = 1, 2, \dots, N$; $t = 1, 2, \dots, T$ (1)

where F_T is the total operating cost over the whole dispatch period, T is the number of hours in the time horizon, N is the total number of generating units, w_I is weighting factor for economic objective such that its value should be within the range 0 and 1, and w_2 is the weighting factor for emission objective which is given by w_2 =(1- w_I), and h_i is the price penalty factor. $F_{i,t}(P_{i,t})$ and $E_{i,t}(P_{i,t})$ are the generation cost and the amount of emission for unit i at time interval t, and $P_{i,t}$ is the real power output of ith generating unit at time period t.

The production cost of generating unit considering valve-point effect is defined as:

$$F_{i,t}(P_{i,t}) = \begin{pmatrix} a_i P_{i,t}^2 + b_i P_{i,t} + c_i + \\ |e_i \times \sin(f_i \times (P_{i,\min} - P_{i,t}))| \end{pmatrix}$$
 (2)

where the constant a_i , b_i , and c_i represents generator cost coefficients and e_i and f_i represents valve-point effect coefficients of the *i*th generating unit.

Utilization of thermal power plant consuming fossil fuel is with release of high amounts of NO_X , they are strongly requested by the environmental protection agency to reduce their emissions. The NO_X emission of the thermal power station having N generating units at interval t in the scheduling horizon is represented by the sum of quadratic and exponential functions of power generation of each unit. The emission due to ith thermal generating unit can be expressed as:

$$E_{i,t}(P_{i,t}) = \left(\alpha_i P_{i,t}^2 + \beta_i P_{i,t} + \gamma_i + \eta_i \exp(\delta_i P_{i,t})\right)$$
(3)

where α_i , β_i , γ_i , η_i and δ_i are emission coefficients of the *i*th generating unit. The minimization of the fuel cost and emission are subjected to the following equality and inequality constraints.

2.1. Power balance constraint

The total generated real power should be the same as total load demand plus the total line loss.

$$\sum_{i=1}^{N} P_{i,t} = P_{D,t} + P_{L,t} \tag{4}$$

where $P_{D,t}$ and $P_{L,t}$ are the demand and transmission loss in MW at time interval t, respectively. The transmission loss $P_{L,t}$ can be expressed by using B matrix technique and is defined by (5) as,

14 ISSN: 2302-9285

$$P_{L,t} = \sum_{i=1}^{N} \sum_{i=1}^{N} P_{i,t} B_{ij} P_{j,t}$$
 (5)

where B_{ij} is the ij-th element of the loss coefficient square matrix of size N.

2.2. Generation limits

The real power output of each generators should lie between minimum and maximum limits.

$$P_{i,\min} \le P_{i,t} \le P_{i,\max} \tag{6}$$

2.3. Ramp rate limits

The ramp-up and ramp-down constraints can be written as (7) and (8), respectively.

$$P_{i,t} - P_{i,t-1} \le UR_i \tag{7}$$

$$P_{i,t-1} - P_{i,t} \le DR_i \tag{8}$$

where $P_{i,t}$ and $P_{i,t-1}$ are the present and previous real power outputs, respectively. UR_i and DR_i are the ramp-up and ramp-down limits of *i*th unit (in units of MW/time period). To consider the ramp rate limits and real power output limits constraint at the same times, therefore, generator capacity limit (6) can be rewritten as follows:

$$\max\{P_{i,\min}, P_{i,t-1} - DR_i\} \le P_{i,t} \le \min\{P_{i,\max}, P_{i,t-1} + UR_i\}$$
(9)

2.4. Prohibited operating zones

Generating units may have certain restricted operating zone due to limitations of machine components or instability concerns. The possible operating zones of the generator can be described as follows [7, 9]:

$$P_{i,t} \in \begin{cases} P_{i,\min} \le P_{i,t} \le P_{i,1}^{l} \\ P_{i,k-1}^{u} \le P_{i,t} \le P_{i,k}^{l}, & k = 2,3,...,pz_{i} \\ P_{i,pz_{i}}^{u} \le P_{i,t} \le P_{i,\max}, & i = 1,2,...,n_{pz} \end{cases}$$

$$(10)$$

where $P_{i,k}^l$ and $P_{i,k}^u$ are the lower and upper boundary of prohibited operating zone of *i*th unit, respectively. Here, pz_i is the number of prohibited zones of *i*th unit and npz is the number of units which have prohibited operating zones.

3. ANT LION OPTIMIZATION

Ant Lion Optimizer (ALO) is a novel nature-inspired algorithm proposed by Sayedali Mirjalili in 2015 [23]. The ALO algorithm emulates the hunting mechanism of antlions in nature. There are five main steps of the algorithm such that random walk of ants, building traps, entrapment of ants in traps, catching preys, and re-building traps. An antlion larvae digs a cone-shaped pit in sand by moving along a circular path and throwing out sands by using massive jaws. After digging the trap, the larvae hides underneath the bottom of the cone and waits for insect to be trapped in the pit. When a prey in caught, it will be pulled and consumed. After that, the antlions throw the leftovers outsode the pit and improve the pit for the next hunt.

3.1. Random walk of ants

The ALO algorithm imitates the interaction between ant lions and ants in the trap. For such interaction models, ants are required to move over the search space and antlions are allowed to hunt them and become fitter using traps. Since ants move stochastically in nature when searching for food, a random walk is chosen for the modeling ants' movement as follows:

$$X(t) = [0, cums(2r(t_1) - 1, cums(2r(t_2) - 1, ..., cums(2r(t_n) - 1)]$$
(11)

ISSN: 2302-9285

where *cums* calculates the cumulative sum and r(t) is defined as follows:

$$r(t) = \begin{cases} \begin{cases} 1, & \text{if } rand > 0.5 \\ 0, & \text{if } rand \le 0.5 \end{cases} \end{cases}$$
 (12)

The position of ants are stored and used during optimization process in the following matrix:

$$M_{ant} = \begin{bmatrix} ant_{1,1} & ant_{1,2} & \dots & ant_{1,d} \\ ant_{2,1} & ant_{2,2} & \dots & ant_{2,d} \\ \vdots & \vdots & \vdots & \vdots \\ ant_{n,1} & ant_{n,2} & \dots & ant_{n,d} \end{bmatrix}$$
(13)

where, M_{ant} is matrix to save the position of each ant, ant_{ij} is value of jth variable (dimension) of ith ant, n is number of ants, and d is number of variables. Random walk of ants are being normalized to keep them moving within the search space using the following equation:

$$X_{i}^{t} = \frac{(X_{i}^{t} - a_{i}) \times (d_{i} - c_{i}^{t})}{(d_{i}^{t} - a_{i})} + c_{i}$$
(14)

where a_i indicates the minimum of random walk of *i*th variable, d_i is the maximum of random walk in *i*th variable, c_i^t is the minimum of *i*th variable at *t*th iteration, and d_i^t indicates the maximum *i*th variable at *t*th iteration.

3.2. Trapping in ant lion's pits

The following equations are used to represent mathematically model of antlions pits.

$$c_i^t = Antliot_i^t + c^t (15)$$

$$d_i^t = Antlio\dot{\eta} + d^t \tag{16}$$

where c^t is the minimum of all variables at tth iteration, d^t indicates the vector including the maximum of all variables at tth iteration, c_i^t is the minimum of all variables for ith ant, d_i^t is the maximum of all variables for ith ant, and Antlioh shows the position of the selected jth antlion at tth iteration.

3.3. Building trap

The ant lion's hunting ability is modelled by roulette wheel operator for selecting ant lions based on their fitness during iterations. This mechanism gives great probabilities to the fitter ant lions for catching preys.

3.4. Sliding ants towards ant lion

Ant lions be able to build traps proportional to their fitness and ants are necessary to move randomly. Once the ant is in the trap, ant lions will shoot sands outwards the center of the pit. This behavior slides down the trapped ant in the trap. The radius of ant's random walk is reduced and it can be written as follows:

$$c^t = \frac{c^t}{I} \tag{17}$$

$$d^t = \frac{d^t}{I} \tag{18}$$

16 □ ISSN: 2302-9285

where I is a ratio, c^t is the minimum of all variables at tth iteration, d^t indicates the vector including the maximum of all variables at tth iteration.

3.5. Catching prey and re-building the pit

The final stage of hunt is when ant reaches the bottom of the pit and being trapped in the ant lion's jaw. The ant lion attracts the ant inside the sand and consumes its body. To mimic this process, it is assumed that capture of prey occurs when ants become fitter (entry into the sand) rather than the corresponding ant lion. Ant lion is required to modernize its location to the latest position of the hunted ant to improve its chance of catching new prey. It is represented by the following equation:

$$Antlio\dot{\eta} = Ant_i^t, if \ f(Ant_i^t) > f(Antlio\dot{\eta})$$
(19)

where t shows the current iteration, $Antlioh_j$ shows the position of selected jth antlion at tth iteration, and Ant_i^t indicates the position of ith ant at tth iteration.

3.6. Elitism

The best ant lion finished so far is maintained as the elite. Since the elite is the best ant lion, it should be able to affect the movements of all ants during iterations. It is assumed that every random walks of ants around a chosen ant lion by the roulette wheel and the elite instantaneously as follows:

$$Ant_i^t = \frac{R_A^t + R_E^t}{2} \tag{20}$$

where R_A^t is the random walk around the antlion selected by the roulette wheel at tth iteration, R_E^t is the random walk around the elite at tth iteration, and Ant_i^t indicates the position of ith ant at t th iteration. Hence, the pseudo code of the ALO algorithm is shown in Table 1.

Table 1. Pseudo-code of ALO

```
Ant Lion Optimizer (ALO)

Initialize the first population of ant and ant lions randomly

Calculate the fitness of ants and antlions

Find the best antlions and assume it as the elite (best solution)

while the end criterion is not satisfied

for every ant

Select an ant lion using Roulette wheel

Update c and d using equations (17) & (18)

Create a random walk and normalize it using equations (11) & (14)

Update the position of ant using equation (20)

end for

Calculate the fitness of all ants

Replace an ant lion with its corresponding ant become fitter using equation (19)

Update elite if an ant lion become fitter than the elite
end while

Return elite
```

4. RESULTS AND DISCUSSION

In order to demonstrate the effectiveness of the proposed approach, a 5-unit generation system with non-smooth fuel cost and emission functions are used. The fuel cost coefficients including valve-point effects, emission coefficients, generation limits, ramp rate limits, prohibited operating zones, B-loss coefficients, and load demand in each interval are given in Appendix, which is taken from [24]. The demand of the system has been divided into 24 intervals. The transmission losses are calculated using B-loss coefficients formula. The parameters of algorithm used for simulation are: max generation=100; population size=40.

The best solutions of the dynamic economic dispatch (DED), dynamic economic emission dispatch (DEED) and pure dynamic emission dispatch (PDED) are given in Tables 2, 3 and 4, respectively. Table 2 shows hourly generation schedule, cost and emission obtained from DED problem. Table 4 shows

hourly generation schedule, cost and emission obtained from PDED problem. It is seen from Tables 2 and 4 that the cost is 43918.3973 \$ under DED but it increases to 52045.7732 \$ under PDED and emission obtained from DED is 22349.7966 lb but decreases to 17892.6468 lb under PDED. Table 3 shows hourly generation schedule, cost and emission obtained from DEED problem. It can be seen that the cost is 46169.4140 \$ which is more than 43918.3973 \$ and less than 52045.7732 \$, and emission is 18268.1766 lb which is less 22349.7966 lb and more than 17892.6468 lb. Table 5 shows that, the effectiveness of the proposed method compared with other method for DEED problem at different weighting factors. It can be seen that both fuel cost and emission less than other method reported in the literature.

Table 2. Hourly power schedule obtained from DED (w_1 =1, w_2 =	ower schedule obtained from DED (v	$w_1 = 1, w_2 = 0$))
--	------------------------------------	--------------------	----

Table 2. Hourly power senedule obtained from BLD (W1-1, W2-0)							
Н	\mathbf{P}_1	P_2	P_3	P_4	P_5	Loss	
1	25.8613	98.5398	30.0000	209.8159	50.0000	4.2170	
2	51.2610	98.5398	30.0000	209.8158	50.0000	4.6166	
3	75.0000	22.9669	32.4448	209.8383	139.9502	5.2002	
4	65.1616	98.5396	112.6735	209.8158	50.0000	6.1905	
5	75.0000	116.5526	113.4974	209.8265	50.0014	6.8777	
6	50.2043	98.5422	112.6735	124.9079	229.5196	7.8474	
7	73.5449	98.5227	112.6735	209.8158	139.7598	8.3167	
8	41.7130	69.3949	112.6739	209.8158	229.5196	9.1172	
9	38.0068	98.5398	124.2545	209.8158	229.5196	10.1365	
10	24.0453	98.5608	112.6736	249.9999	229.5196	10.7991	
11	18.0329	98.5471	175.0000	209.8158	229.5196	10.9154	
12	35.5302	101.6053	175.0000	209.8158	229.5196	11.4709	
13	64.0110	98.5398	112.6732	209.8158	229.5196	10.5595	
14	65.5803	20.0000	174.9999	209.8158	229.5196	9.9155	
15	12.6582	98.5839	112.6806	209.8158	229.5196	9.2580	
16	74.9994	20.0000	174.9997	87.6227	229.5196	7.1414	
17	12.9325	22.1982	175.0000	124.9080	229.5196	6.5582	
18	55.0792	98.5398	112.6734	209.8158	139.7598	7.8679	
19	39.8428	98.5455	174.9996	209.8158	139.7598	8.9635	
20	64.2197	98.3313	112.6725	209.8158	229.5196	10.5588	
21	55.3004	20.0000	175.0000	209.8158	229.5196	9.6358	
22	52.0075	98.5399	112.6735	209.8158	139.7598	7.7965	
23	56.8895	98.5400	112.6734	124.9079	139.7598	5.7705	
24	10.0000	20.0014	112.6728	40.0000	285.4157	5.0900	
	Cost=	43918.3973\$,	Emission=2234	19.7966 lb, Loss	=194.8210 MW	T	

Table 3. Hourly power schedule obtained from DEED ($w_1=w_2=0.5$)

Н	\mathbf{P}_1	P_2	P_3	P_4	P_5	Loss		
1	56.2125	69.7261	112.6735	124.9079	50.0000	3.5200		
2	58.5573	92.8684	112.6735	124.9079	50.0000	4.0071		
3	75.0000	76.8369	131.9377	124.9079	70.9978	4.6804		
4	74.8300	92.1340	112.6735	124.9079	131.2762	5.8216		
5	74.9999	98.1825	127.0057	124.9079	139.3488	6.4448		
6	75.0000	98.5349	155.2811	147.0503	139.7597	7.6259		
7	75.0000	98.5342	130.7738	190.3344	139.5529	8.1954		
8	75.0000	110.0955	128.4008	209.7840	139.7596	9.0400		
9	75.0000	99.7630	175.0000	210.1963	139.9548	9.9141		
10	75.0000	114.3818	174.9986	209.9598	140.0183	10.3584		
11	75.0000	118.5670	175.0000	219.9304	142.3734	10.8708		
12	75.0000	108.3505	175.0000	238.0187	155.1214	11.4906		
13	75.0000	110.0082	175.0000	210.8050	143.5295	10.3427		
14	75.0000	105.0828	171.8835	208.2014	139.7587	9.9263		
15	75.0000	98.5380	142.8135	206.8483	139.7569	8.9567		
16	74.9999	95.3435	152.9018	124.9079	138.7789	6.9321		
17	75.0000	98.5376	123.9906	127.1628	139.7597	6.4507		
18	75.0000	98.5398	174.4717	127.8544	139.7594	7.6253		
19	75.0000	98.2779	160.3730	189.5171	139.7086	8.8765		
20	75.0000	115.1852	174.6733	209.7439	139.7588	10.3612		
21	75.0000	98.5044	171.4495	204.9053	139.7585	9.6176		
22	75.0000	98.5376	113.9618	185.4355	139.7597	7.6946		
23	73.5532	97.6849	112.6735	124.9079	123.9483	5.7678		
24	74.9999	98.3978	112.6741	124.9079	56.5525	4.5322		
	Cost=46169.4140 \$, Emission=18268.17661b, Loss=189.0527 MW							

18 □ ISSN: 2302-9285

Table 4. Hourly power schedule obtained from PDED (w_1 =0, w_2 =1)

Н	P ₁	$\frac{1}{P_2}$	P ₃	P_4	$\frac{P_5}{P_5}$	Loss
1	54.6786	58.2356	116.5716	110.5981	73.3640	3.4480
2	58.0672	62.3819	121.8509	117.9836	78.6018	3.8854
2 3	63.5262	69.0800	130.2207	129.7505	87.0639	4.6413
4	71.1207	78.4277	141.5527	145.8016	98.8910	5.7936
5	74.9999	83.3154	147.2323	153.9048	104.9785	6.4309
6	75.0000	91.9499	159.4748	170.2298	118.9950	7.6494
7	75.0000	95.1864	164.1954	177.1523	122.5852	8.1193
8	75.0000	94.8816	168.7868	190.1070	134.0911	8.8665
9	75.0000	85.7558	174.9838	210.8898	153.2434	9.8728
10	75.0000	98.8818	173.6087	214.1101	152.7137	10.3143
11	75.0000	111.2904	174.9776	215.4427	154.1092	10.8198
12	75.0000	121.9403	174.9968	219.0873	160.4403	1.4647
13	75.0000	118.6921	165.7814	213.3878	141.5334	10.3947
14	75.0000	107.6590	173.7776	200.5836	142.8876	9.9078
15	75.0000	111.5516	162.4142	182.0796	131.8580	8.9033
16	75.0000	87.9110	151.9306	161.2752	110.8391	6.9559
17	75.0000	83.2731	147.2534	153.9011	105.0031	6.4308
18	75.0000	94.9973	157.1994	171.8454	116.6214	7.6636
19	75.0000	96.9959	171.2959	186.1810	133.3893	8.8622
20	75.0000	120.3442	174.8855	191.8065	152.2863	10.3226
21	75.0000	112.1216	173.5918	191.3485	137.5616	9.6234
22	75.0000	93.8975	156.7095	168.6037	118.3678	7.5785
23	70.7035	77.9152	140.9381	144.9311	98.2394	5.7274
24	61.8833	67.0622	127.7208	126.2268	84.5143	4.4073
	Cost=5	52045.7732.\$. F	mission=17892	.64681h Loss=	188.0835 MW	

Table 5. Comparison results for 5-unit system

Weight	Method	Cost (\$)	Emission (lb)
$w_1=1; w_2=0$	PSO [24]	47852	22405
	DE-SQP [25]	45590	23567
	ALO	43918.3973	22349.7966
$w_1 = w_2 = 0.5$	PSO [24]	50893	20163
	DE-SQP [25]	46625	20527
	ALO	46169.4140	18268.1766
$w_1=0; w_2=1$	PSO [24]	53086	19094
	DE-SQP [25]	52611	18955
	ALO	52045.7732	17892.6468

5. CONCLUSION

In this paper, Ant Lion Optimization (ALO) has been successfully applied for solving the DEED problem. The effectiveness of this algorithm is demonstrated on 5-unit generation system. The results obtained from the test systems have indicated that the proposed technique has a much better performance than other optimization methods reported in the literature. The main advantage of proposed algorithm is a good ability for finding the solution. From the results obtained it can be concluded that the proposed algorithm is a competitive technique for solving complex non-smooth optimization problems in power systemoperation.

APPENDIX

Table A-1. Data for the 5-unit system

Quantities	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5
$a_i (\$/(MW)^2 h)$	0.0080	0.0030	0.0012	0.0010	0.0015
$b_i(\$/MWh)$	2.0	1.8	2.1	2.0	1.8
$c_i(\$/h)$	25	60	100	120	40
$e_i(\$/h)$	100	140	160	180	200
$f_i(\text{rad/MW})$	0.042	0.040	0.038	0.037	0.035
$\alpha_i(lb/MW^2h)$	0.0180	0.0150	0.0105	0.0080	0.0120
β_i (lb/MWh)	-0.805	-0.555	-1.355	-0.600	-0.555
γ_i (lb/h)	80	50	60	45	30
$\eta_i(lb/h)$	0.6550	0.5773	0.4968	0.4860	0.5035
$\delta_i(1/MW)$	0.02846	0.02446	0.02270	0.01948	0.02075
$P_{i, min}$ (MW)	10	20	30	40	50
$P_{i, max}(MW)$	75	125	175	250	300
$UR_i(MW/h)$	30	30	40	50	50
$DR_i(MW/h)$	30	30	40	50	50
POZ_{s-1}	[25 30]	[45 50]	[60 70]	[95 110]	[80 100]
POZ_{s-2}	[55 60]	[80 90]	[125 140]	[160 180]	[175 200]

Table A-2. B-loss coefficients (5-unit sys
--

	0.000049 0.000014	0.000015 0.000015 0.000020	
	0.000014 0.000045	0.000016 0.0000200.000018	
B =	0.000015 0.000016	0.000039 0.0000100.000012	perMW
	0.000015 0.000020	0.000010 0.0000400.000014	
i	0.000020 0.000018	0.000012 0.0000140.000035	

ISSN: 2302-9285

Table A-3. Load demand for 24 hours (5-unit system)

Time	Load	Time	Load	Time	Load	Time	Load
(h)	(MW)	(h)	(MW)	(h)	(MW)	(h)	(MW)
1	410	7	626	13	704	19	654
2	435	8	654	14	690	20	704
3	475	9	690	15	654	21	680
4	530	10	704	16	580	22	605
5	558	11	720	17	558	23	527
6	608	12	740	18	608	24	463

REFERENCES

- [1] X. S. Han, H. B. Gooi and D. S. Kirschen, "Dynamic economic dispatch: feasible and optimal solutions," in *IEEE Transactions on Power Systems*, vol. 16, no. 1, pp. 22-28, Feb 2001.
- [2] X. Xia and A. M. Elaiw, "Optimal dynamic economic dispatch of generation: a review," *Elect. Power Syst. Res.*, vol. 80, no. 8, pp. 975-986, 2010
- [3] X. Yuan, A. Su, Y. Yuan, H. Nie and L. Wang, "An improved PSO for dynamic load dispatch of generators with valve-point effects," *Energy*, vol. 34, pp. 67-74, 2009.
- [4] J. S. Alsumait, M. Qasem, J. K. Sykulski and A. K. Al-Othman, "An improved pattern search based algorithm to solve the dynamic economic dispatch problem with valve-point effect," *Energy Conversion and Management*, vol. 51, pp. 2062-2067, 2010.
- [5] S. Sivasubramani and K. S. Swarup, "Hybrid SOA-SQP algorithm for dynamic economic dispatch with valve-point effects," *Energy*, vol. 35, pp. 5031-5036, 2010.
- [6] T. A. A. Victoire and A. E. Jeyakumar, "Deterministically guided PSO for dynamic dispatch considering valve-point-effect," *Elect. Power Syst. Res.*, vol. 73, no. 3, pp. 313-322, 2005.
- [7] Zwe-Lee Gaing, "Constrained dynamic economic dispatch solution using particle swarm optimization," *IEEE Power Engineering Society General Meeting*, 2004., Denver, CO, vol. 1, pp. 153-158, 2004.
- [8] M. Basu, "Artificial immune system for dynamic economic dispatch," *International Journal of Electrical Power & Energy Systems*, vol. 33, no. 1, pp. 131-136, 2011.
- [9] F. Benhamida *et al.*, "a solution to dynamic economic dispatch with prohibited zones using a hopfield neural network," 7th International Conference on Electrical and Electronic Engineering, Bursa, Turkey, pp. 423-427, 1-4 December 2011.
- [10] M. A. Abido, "Environmental/economic power dispatch using multiobjective evolutionary algorithms," in *IEEE Transactions on Power Systems*, vol. 18, no. 4, pp. 1529-1537, Nov 2003.
- [11] M. Basu, "Evolutionary Programming-based goal-attainment method for economic emission load dispatch with non-smooth fuel cost and emission level functions," *Journal of The Institution of Engineers (India)*, vol. 86, pp. 95-99, 2005.
- [12] U. Güvenç, "Combined economic emission dispatch solution using genetic algorithm based on similarity crossover," Sci. Res. Essay, vol. 5, no. 17, pp. 2451-2456, 2010.
- [13] Y. Sonmez, "Multi-objective environmental/economic dispatch solution with penalty factor using artificial bee colony algorithm," *Sci. Res. Essay*, vol. 6, no. 13, pp. 2824-2831, 2011.
- [14] K. Vaisakh, P. Praveena and K. N. Sujatha, "Solution of dynamic economic emission dispatch problem by hybrid bacterial foraging algorithm," *International Journal of Computer Science and Electronics Engineering*, vol. 2, no. 1, pp. 58-64, 2014.
- [15] M. A. Abido, "A novel multiobjective evolutionary algorithm for environmental/economic power dispatch," *Electric Power Systems Research*, vol. 65, pp. 71-81, 2003.
- [16] Hong-Tzer Yang, Pai-Chuan Yang and Ching-Lien Huang, "Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions," in *IEEE Transactions on Power Systems*, vol. 11, no. 1, pp. 112-118, Feb 1996.
- [17] Zwe-Lee Gaing, "Particle swarm optimization to solving the economic dispatch considering the generator constraints," in *IEEE Transactions on Power Systems*, vol. 18, no. 3, pp. 1187-1195, Aug 2003.
- [18] S. Duman, U. Güvenç and N. Yorukeren, "Gravitational search algorithm for economic dispatch with valve-point effects," *International Review of Electrical Engineering*, vol. 5, no. 6, pp. 2890-2895, 2010.

20 ISSN: 2302-9285

[19] R. Balamuruga and S. Subramanian, "An improved differential evolution based dynamic economic dispatch with nonsmooth fuel cost function," *Journal of Electrical Systems*, vol. 3, no. 3, pp. 151-161, 2007.

- [20] B. Mohammadi–ivatloo, A. Rabiee and M. Ehsan, "Time varying acceleration coefficients ipso for solving dynamic economic dispatch with non-smooth cost function," *Energy Conversion and Management*, vol. 56, pp. 175-183, 2012.
- [21] B. Mohammadi–ivatloo, A. Rabiee, A. Soroudi and M. Ehsan, "Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch," *Energy*, vol. 44, pp. 228-240, 2012.
- [22] Rajkumari Batham, Kalpana Jain and Manjaree Pandit, "Improved particle swarm optimization approach for nonconvex static and dynamic economic power dispatch," *International Journal of Engineering, Science and Technology*, vol. 3, no. 4, pp. 130-146, 2011.
- [23] S. Mirjalili, "The ant lion optimizer," Advanced in Engineering Software, vol. 83, pp. 80-98, 2015.
- [24] M. Basu, "Particle swarm optimization based goal-attainment method for dynamic economic emission dispatch," Electric Power Components and Systems, vol. 34, pp. 1015-1025, 2006.
- [25] A. M. Shehata and A. M. Elaiw, "Hybrid DE-SQP for solving dynamic economic emission dispatch with prohibited operating zones", *International Journal of Scientific & Engineering Research*, vol. 6, no. 10, pp. 1136-1141, October 2015.