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Heuristic algorithms play a significant role in synthesize and optimization
of digital circuits based on reversible logic yet suffer with multiple
disadvantages for multiqubit functions like scalability, run time and memory
space. Synthesis of reversible logic circuit ends up with trade off between
number of gates, quantum cost, ancillary inputs and garbage outputs.
Research on optimization of quantum cost seems intractable. Therefore post
synthesis optimization needs to be done for reduction of quantum cost.
Many researchers have proposed exact synthesis approaches in reversible
logic but focussed on reduction of number of gates yet quantum cost remains
undefined. The main goal of this paper is to propose improved ant colony
optimization (ACO) algorithm for quantum cost reduction. The research
efforts reported in this paper represent a significant contribution towards
synthesis and optimization of high complexity reversible function via swarm
intelligence based approach. The improved ACO algorithm provides low

quantum cost based toffoli synthesis of reversible logic function without long
computation overhead.
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1. INTRODUCTION

Reversible logic circuit based synthesis and optimization methods have been broadly classified into
two categories. Most of the approaches are based on heuristic algorithms like cycle based, binary decision
diagram based, exclusive sum of product based, rule based, transformation based, search based or non search
based. Each approach proves itself better in terms of some of the point but simultaneously lacking in terms
of other. Practical application based reversible circuits are multi qubit based and search space is large.
For such applications heuristic algorithm based approaches suffers in terms of scalability, run time, memory
space etc and many researchers decided to blaze into evolutionary algorithm based approaches to achieve
optimal or near optimal results with saving of computation time and memory space.

Ant colony optimization can be applied with guarantee of convergence and optimal solutions
are obtained [1]. Basic algorithm always provides systematic transformation results with convergence [2].
Positive polarity Reed Muller based synthesis method attained good results as far as scalability and run time
are concerned [3]. Cycle based synthesis can be used for reversible logic circuits but does not seem good on
scalability and there is scope of improvement of run time also; circuit dependency need to be removed [4].
Search based synthesis provides good results but method suffers with limited scalability [5]. Non search
based synthesis is found to be ancillary free method and proves improved performance in terms of scalability
but circuit suffers with high quantum cost [6]. Exclusive sum of product based synthesis gives encouraging
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results as far as scalability is concerned but at the cost of more ancillary inputs [7]. Binary decision diagram
based synthesis provides good performance with large functions but at the cost of ancillary inputs, garbage
outputs and there is circuit dependency also [8]. Transformation based synthesis is ancillary input free but
circuit suffers with limited scalability [9]. Rule based synthesis can be applied without consuming any
ancillary input but there is high circuit dependency [10]. A hybrid technique for synthesis is used to achieve
optimum balance in terms of convergence time, memory space occupied and quantum cost [11]. Cycle based
synthesis approach [12] based on principle of decomposition is proposed with assurance of optimum balance
of quantum cost and run time and guarantee of convergence. There is no requirement of ancillary input but
method suffers with circuit dependency. Ant colony optimization (ACO) based approach [13] is used for
synthesis of reversible logic circuits and results are compared with earlier proposed heuristic methods.
The performance evaluation shows saving of gates with their proposed method. There is saving of run time
and memory space also but quantum cost is not optimized in every solution. BSSSN and its variant can be
applied for transformation but quantum cost becomes very high [14, 15] and need to be optimized.
Particle swarm optimization based synthesis leads to optimal or near optimal results with saving of synthesis
time [16]. A stochastic search based technique can be used to synthesize reversible circuit using simulated
annealing combined with ACO. The results are found to be very satisfying [17]. Reversible logic circuit
synthesis is proposed using adaptive genetic algorithm and achieves good results in terms of gate count as
compare to existing work [18]. Reversible logic synthesis using mixed polarity Toffoli gate is presented and
proved efficient as compare to other existing techniques [19]. Binary decision diagram based synthesis
approach is proved to be ancilla free and can be used for large number of variables [20]. Optimization is an
intractable problem and there is always scope of improvement. Recently different models of ALU have been
proposed [21-24] and can be optimized by applying existing techniques or investigated new technique.

Several approaches have been proposed by various authors for reversible logic based design.
Yet there is lot of scope to improve quantum cost of reversible function. In this paper improved ant colony
optimization is proposed and applied on high complexity reversible function for its synthesis with reduction
of its quantum cost. The proposed methodology is given in section 2. The reversible logic function
optimization using ACO is given in section 3. Conclusion is given in section 4.

2. RESEARCH METHOD

Ant colony optimization is applied to minimize the quantum cost in reversible logic based ALU
circuit. Terminology used for ant colony can be mapped to any reversible logic function by considering nest
as output of function and food as input of function. Application of ant colony optimization to reversible
logic function leads to the generation of a low quantum cost based circuit by applying Toffoli gates to bring
reversible function to its identity function. The proposed methodology is based on depth first search (DFS)
in breadth first search (BFS). The synthesis algorithm not only shows all toffoli gates used for synthesis but
also identifies reduced quantum cost for synthesis. All shortest possible paths with low quantum cost can be
identified with this algorithm. Steps used for implementation are given below:

1. Reversible function is calculated for complexity by cumulatively adding hamming distance between all
input states (ABC) and their corresponding output states (A°B°CY).

2. Output State with highest hamming distance from input state is identified.

3. If there are multiple output states coming with same hamming distance from their corresponding input
states, then randomly choose any one of them.

4. Record all possible state transitions from chosen output state and delete state transition if that leads to
corresponding input state.

5. Investigate all possible toffoli gates from chosen library for synthesis that will participate in recorded

state transitions.

Apply investigated toffoli gates to output function and calculate complexity of each transformed function.

7. Choose toffoli gate which provides lowest complexity transformation and obtained transformation
is now considered as current output state (A'B*C?). Repeat steps 2 to 7 and transformations are updated
as A?B?C?, ABS3C2 and so on till complexity becomes zero; indicating synthesis process is complete.
Add all applied toffoli gates to gate sequence i.e. g1, g2, g3 etc which describe synthesis flow direction
from output to input.

This algorithm can be understood with the help of an example. Let output of reversible function
is A’B°C%={1, 0, 3, 2, 5, 7, 4, 6}. Complexity of this output function is calculated as 8 with respect to input
function. As all output state are with equal hamming distance from their respective input state. Therefore
state 1 is chosen which can be moved to state 0 or 3 or 5. Toffoli gates selected for these three transitions
(1-0), (1-3), (1-5) are T1(C), T1 (B)/T2(C: B), T1 (A)/T2 (C: A) respectively. All these selected toffoli gates
are applied to A°B°C® and complexity is calculated for each transformation. After applying T1(C),
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complexity obtained is 4 which is lowest among all obtained transformations. Hence AB'C!={0, 1, 2, 3, 4, 6,
5, 7}. Now all states of A'BC! are examined for hamming distance and two states 6 and 5 are identified with
highest hamming distance of 2 from their corresponding input states. Now depth first search algorithm can be
applied to state 6. State 6 can be further moved to state 2 or 4 or 7. Toffoli gates selected for these three
transitions (6-2), (6-4), (6-7) are T1 (A)/T2 (B: A), T1 (B)/T2 (A: B), T1(C)/T2 (A: C)/T2 (B: C)/T3 (A, B:
C) respectively. All these selected toffoli gates are applied to A'B!C! and complexity is calculated for each
transformation. After applying T2 (A: B)/T3 (A, C: B)/T2 (A: C)/T3 (A, B: C) complexity obtained is 4
which is lowest among all obtained transformations. Hence A2B2C?=case 1[T2(A:B) {A!B!C'}]=
{0, 1, 2, 3, 6, 4, 7, 5} or case 2{0,1,2,3,4,6,7,5} or case 3{0,1,2,3,5,7,4,6} or case 4{0,1,2,3,4,7,5,6}.
Now randomly first two cases are chosen for analysis. Now depth first search can be further applied to
case 1. In case 1, all states of A?B2C? are examined for hamming distance and all four states 6, 4, 7 and 5
are identified with highest hamming distance of 1 from their corresponding input states. Now state 6 can
be further moved to state 2 or 4 or 7. Transition (6-7) via T3 (A, B: C) results in lowest complexity of 4.
Hence A®B3C3={0, 1, 2, 3, 7, 4, 6, 5}. Now all states of A3B3C? are examined for hamming distance.
State 7 is found to be with highest hamming distance of 2. Now state 7 can be moved to state 3 or 5 or 6.
Transition (7-5) via T3 (A, C: B) results in lowest complexity of 2. Hence A*B*C*={0, 1, 2, 3, 5, 4, 6, 7}.
Now all states of A*B*C* are examined for hamming distance. Further Transition (6-7) via T3 (A, B: C)
results in lowest complexity of 2 and hence ASB°C°={0, 1, 2, 3, 5, 4, 7, 6}. Finally state transition (5-4) via
T2 (A: C) results in identity function ASBSC%={0, 1, 2, 3, 4, 5, 6, 7} where complexity is zero. Sequence of
Toffoli gates followed is [T1(C), T2(A: B), T3(A, B:C), T3 (A,C:B), T3(A,B:C), T2(A:C)]. Similarly toffoli
sequence for case 2 can be calculated as [T1(C), T3 (A, B: C), T3 (A, C: B), T3 (A, B: C),]. Path followed
ABCDEFG and ABC’DG in Figure 1 represents case 1 and 2 respectively. Case 1 leads to reversible function
synthesis with the help of 6 gates and quantum cost calculated is 18. Case 2 leads to reversible function
synthesis with the help of 4 gates and quantum cost calculated is 16. Case 3 and Case 4 leads
to implementation with the help of 6 gates with quantum cost of 18 and 4 gates with quantum cost
of 16 respectively.

A | 1,03,2,5,74,6

1

F \V
B 0,1,2,3,4,6,5,7

1 5 L,

C 0,1,2,3,6,4,7,5 0,1,2,3,46,75 | C'
‘1, 5 5 \I{

D 0,1,2,3,7,4,6,5 0,1,2,3,4,7,65 | D'
sl S

E 0,1,2,3,5,4,6,7 5
sle 5 1

F 0,1,2,3,5,4,7,6 > 01234567 | G

Figure 1. Reversible logic synthesis implementation

2.1. Procedure for probabilistic construction of ant solution

Initially i ants are positioned on output of reversible function. Each ant progressively builds a route
by choosing a gate randomly from NCT library but biased partly on pheromone on edges (t) and heuristic
(). The pheromone on edge i.e. trail strength is multiplied by problem specific heuristic information. Ant ‘a’
chooses a gate from NCT library in such a way that complexity of function decreases progressively as well
as gate chosen should have low quantum cost. In this way ant chooses path with shorter edges having less
quantum cost and denser trail strength. Exponent of pheromone function and heuristic function are specified
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as a and f respectively. There is trade off between these two parameters. For simplicity o and j are put equal
to one. Any gate belongs to NCT library functions according to two types of bits i.e. control bit and target
bit. The information on target bit is changed according to information on control bit/bits. When an ant a is at
current state CS, in K™ iteration, then probability of choosing t"as target bit is given in (1).

[, (CSa. K)] “[n] ”
P (CS.K) = 1)

o F
z alllegalb (Tb) [rlb]

Where is cumulative trail strength to choose t™ bit as target bit for all edges between current state (CS,) and
final state (identity function).The nds weighing function to choose t™ bit as target bit in such a way that
complexity of function should decrease progressively along with reduction of quantum cost if there is tie
between two states with same complexity.Similarly probability of choosing control bit is given in (2).

[t (CSa. K)] “[n ] "
P (CS_.K)= )

o B
z alllegalb I(Tb) []]b]

2.2. Procedure for pheromone updation

After stochastic construction of route by all ants, pheromone Updation rule is applied as per (3).
As per first part of rule, pheromone evaporation is done to evaporate and henceforth decrease pheromone
values so that unnecessary accumulation of pheromone is avoided that may otherwise lead to rapid
convergence of algorithm. As per second part of rule, each ant is allowed to add pheromone on edges it has
visited. In this way denser trails with better solution get constructed and leads to higher reinforcement.

T (@KD)=(-p)1_ g+ AT (gK) @

Where p is pheromone evaporation rate and usually taken greater than 0 and less than equal to 1. A t2y(9, K)
is the amount of pheromone that ant a deposits at K" iteration. Its mathematical value is given in (4).

Q *Dist(g) if ge route,

A‘Ca :(g_ K): QC(routea] (4)

0 otherwise

Where Q is total amount of pheromone released by an ant a. QC is total quantum cost of route. If a gate has
less quantum cost, then amount of pheromone deposited will be more. Dist (g) indicates position of gate
from start of route.

3. REVERSIBLE LOGIC FUNCTION OPTIMIZATION

The ACO algorithm employed for reversible function optimization starts with implementation
of pheromone table. Path updation as per implemented pheromone table and reinforcement enables finding
shortest path with reduced quantum cost. An example is illustrated to understand reversible logic function
optimization procedure. Let the reversible function be f(n)={5,2,0,4,7,3,1,6}, the improved ant colony
optimization algorithm transforms this function to an identity function with a sequence of Toffoli gates in
terms of TOF1, TOF2 and TOF3. TOFL1 (T1) is called as NOT gate, TOF2 (T2) is called as CNOT gate
and TOF3 (T3) is called as Toffoli gate. Table 1 represents the truth table for the chosen reversible function
on which proposed ant colony optimization algorithm is applied.

For 3 bit reversible function, initial pheromone graph can be constructed by taking eight vertices
and 64 edges. Among 64 edges, 32 edges are significant and rests 32 are not significant. A state transition can
only takes place if hamming distance between input and output vector is either O or 1 bit. Significant 32
edges indicate state transition possibility with hamming distance 0 or 1. Non significant 32 edges indicate no
possibility of state transition as hamming distance becomes greater than 1. Among 32 significant edges,
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8 edges return to same vertex from which they initiated and need to be trimmed. Rests 24 are significant on
practical basis. Switching from one state to other should be done in such a way that hamming distance
between two states should be one. If initial state is O, then next state can be 1, 2 or 4. If initial state is 1,
then next state can be 3, 5 or 0. If initial state is 2, then next state can be 3, 6 or 0. If initial state is 3,
then next state can be 2, 7 or 1. If initial state is 4, then next state can be 0, 6 or 5. If initial state is 5,
then next state can be 1, 7 or 4. If initial state is 6, then next state can be 2, 4 or 7. If initial state is 7,
then next state can be 3, 6 or 5. The hamming distance between vertices (0-1), (0-2), (0-4), (1-0), (1-3), (1-5),
(2-0), (2-3), (2-6), (3-1), (3-2), (3-7), (4-0), (4-5), (4-6), (5-1), (5-4), (5-7), (6-2), (6-4), (6-7), (7-3), (7-5).
(7-6) is 1; hence these represent significant 24 edges which will participate in state transition and gate
choosing. The hamming distance between states (0,7), (1,6), (2,5), (3,4), (4,3), (5,2), (6,1), (7,0) is 3.
The hamming distance from one vertex to each other possible vertex is given in Table 2. It can be logically
calculated by applying XOR bit by bit between two vertices which need to be used for calculation
of hamming distance. If bits are alike; then XOR logic provides 0, otherwise XOR logic provides 1
corresponding to those two bits. Then the XOR logic result of all three comparisons are passed to full adder,
the output of full adder provides hamming distance in binary form and can be converted to decimal as per
requirement. Complexity of a reversible function can be calculated by calculating state by state cumulative
hamming distance between input and output function. The highest worst case complexity can be seen with
reversible function f={7, 6, 5, 4, 3, 2, 1, 0} and it is calculated as 24.

Table 1. Truth table
[

o
Q0
=}

PR PP OOOO|0
PRrOORRLROO
RPORORORO|D
roOOoORrROOR
RPORROORO
oOrRrPRPrPRPROOCOR

Table 2. Hamming distance calculation
Vertex  0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)
0(000)
1(001)
2(010)
3(011)
4(100)
5(101)
6(110)
7(111)

WNDNEFENREP PO
NWEFENEFENOPRP
NP WOWNRFP,ONPRE
PNOMNNWOREN
NFPFPOWNN PP
PNORFRPNWEN
PONRFPFNPFEWN
OFRPFPNFENND®

For 3 bit reversible function, there exists 12 Toffoli gates : T1(A), T1(B), T1(C), T2(A:B), T2(A:C),
T2(B:A), T2(B:C), T2(C:A), T2(C:B), T3(A,B:C), T3(B,C:A), T3(C,A:B). As all these gates are reversible,
therefore state transition in both directions [(0,1) (1,0)], [(0,2) (2,0)], [(0,4) (4,0)], [(1,3) (3,1)], [(1,5) (5,1)],
[(2,3) (3.2)], [(2,6) (6.2)], [3,7) (7.3)], [(4.5) (5.4)], [(4.6) (6.4)], [(5.7) (7.5)], [(6,7) (7.6)] select same
Toffoli gate. State transitions with possibility of Toffoli gate selection is shown in Table 3. Table summary
shows that some state transitions select only NOT gate (T1) and other may choose between NOT (T1)
and CNOT (T2) gate and Toffoli gate (T3). Selection of a right gate leads to optimum synthesis and usually
a gate is selected in such a way that complexity of function should decrease progressively or if same
complexity falls with any of two gate options, then gate with lower quantum cost should be given priority.
In this way optimum reversible circuit synthesis can be done in terms of less gate count as well as low
guantum cost.

Table 3 can be seen from another prospective where it will be possible to see requirement of a toffoli
gate for all possible transitions. Table 4 shows 12 toffoli gates against all possible transitions. Toffoli gates
T3(A,B:C), T3(A,C:B) and T3(B,C:A) are used for state transitions [(6,7) (7,6)],[(5,7) (7,5)], [(3,7) (7,3)]
respectively. It means these transitions are costly as compare to other transitions if moved through toffoli
gates with guantum cost 5. Rest other transitions make use of NOT gate or CNOT gate with unity quantum cost.
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Table 3. Toffoli gate selection

State Transition Toffoli Gate Selection
3 Bit Reversible Function NOT Gate CNOT Gate Toffoli Gate
(ABC) (T (T2) (T3)
0o —» 1 T1(C) - -
[ m— T1(B)
0 —» 4 T1(A)
1 —» 3 T1(B) T2(C:B)
1 —» 5 T1(A) T2(C:A)
2 —» 3 T1(C) T2(B:C)
2 —» 6 T1(A) T2(B:A)
3 —» 7 T1(A) T2(B:A) or T2(C:A) T3(B,C:A)
4 —» 5 T1(C) T2(A:C)
4 —» 6 T1(B) T2(A:B)
5 —p 7 T1(B) T2(A:B) or T2(C:B) T3(A,C:B)
6 —p 7 T1(C) T2(A:C) or T2(B:C) T3(A,B:C)

Table 4. State transition selection

Toffoli Gate State Transition Selection
T1(A) 0o —» 4 1 —» 5 2 —» 6 3 —» 7
+— — «— +—
T1(B) 0 —» 2 1 —» 3 4 —» 6 5 — 7
+— +— — —
T1 —> 1 2 —> 4 —> > 7
©) 0 3 5 6
T2(A:B 4 —_p 6 5  a— 7
(A:B) — —
T2(A:C) 4 —» 5 6 _ 7
+— —
T2(B:A) 2 —» 6 3 —_— 7
— —
T2(B:C) 2 —» 3 6 —_ 7
— +—
: o e
T2(C:A) 1 5 3 7
T2(C:B) 1 — 3 5 — > 7
+— —
T3(A,B:C) 6 > 7
—
T3(A,.C:B) 5 o 7
—
. _—>
T3(B,C:A) 3 : 7

Selection of toffoli gate as per state transition in 3 bit reversible function can be applied to multi
qubit function. Number of transitions and number of Toffoli gate options increase as per reversible logic
function. The Ant system graph is constructed for given reversible function as shown in Figure 2.
The quantum cost is highlighted on every edge. The quantum cost 1 is shown for family of gates belonging to
T1 and T2. The quantum cost 5 is shown for T3 with two positive control lines or one negative and one
positive control line. The quantum cost 6 is shown for T3 with two negative control lines. The shortest
optimal path with lowest quantum cost is highlighted with green colour. Table 5 shows comparative analysis
of toffoli network built through basic algorithm as per literature, improved basic algorithm, bidirectional
algorithm, bit string swap sorting network (BSSSN) and variant of BSSSN with proposed ACO.
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Figure 2. Ant system graph for reversible function

Table 5. Comparative analysis

Algorithm Total Gates  Quantum cost
Basic algorithm [2] 11 31
Improved Basic algorithm [25] 8 20
Bidirectional algorithm [2] 8 20
BSSSN [14] 21 57
Variant of BSSSN [14] 19 63
Proposed ACO 9 13

CONCLUSION
In this paper, ant colony optimization algorithm is proposed with goal of reduction of quantum cost.

The proposed ant colony optimization algorithm has been applied on high complexity reversible function.
and result shows that after applying ACO, quantum cost gets reduced in comparison with other existing
methods. It is also observed that it is not necessary that reduction of gates always find optimum solution.
Improved basic algorithm and bidirectional algorithm synthesized reversible function using 8 gates with quantum
cost 20 yet proposed ACO method synthesized reversible function using 9 gates with quantum cost 13.
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