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 This paper presents the design of a fuzzy tracking controller for balancing 

and velocity control of a Two-Wheeled Inverted Pendulum (TWIP) mobile 

robot based on its Takagi-Sugino (T-S) fuzzy model, fuzzy Lyapunov 

function and non-parallel distributed compensation (non-PDC) control law. 

The T-S fuzzy model of the TWIP mobile robot was developed from its 

nonlinear dynamical equations of motion. Stabilization conditions in a form 

of linear matrix inequalities (LMIs) were derived based on the T-S fuzzy 

model of the TWIP mobile robot, a fuzzy Lyapunov function and a non-PDC 

control law. Based on the derived stabilization conditions and the T-S fuzzy 

model of the TWIP mobile robot, a state feedback velocity tracking 

controller was then proposed for the TWIP mobile robot. The balancing and 

velocity tracking performance of the proposed controller was investigated via 

simulations. The simulation result shows the effectiveness of the proposed 

control scheme. 
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1. INTRODUCTION  

A two-wheeled inverted pendulum (TWIP) mobile robot is a three-degree-of-freedom under-

actuated mechanical system with highly nonlinear dynamics. It is quiet challenging to control such system 

due to its unstable and under-actuated nature. Numerous works on modeling and control of TWIP mobile 

robot have been presented in literature. Kim et al [1] investigated the exact dynamics of the TWIP mobile 

robot, and a Linear Quadratic Regulator (LQR) controller was developed for balancing the robot. Fiacchini et 

al [2] proposed linear and nonlinear controllers for stabilizing a personal pendulum vehicle. To compensate 

for the measurable disturbances, the work in [3] compared the performance of Model Predictive Controller 

and LQR. Multipoint pole placement control for velocity tracking of the TWIP is shown in [4]. In Jones and 

Stol [5], the performance of the two wheeled mobile robot in low-traction environment was investigated by 

designing a LQR controller based on linearized model of the robot which includes wheel slip effects. Pathak 

et al [6] proposed velocity and position controllers for the TWIP robot via partial feedback linearization. Dai 

et al [7] proposed sliding mode controllers for self-balancing and yaw motion and designed independently. 

While Kim et al [8] investigated a nonlinear motion control using the State-Dependent Riccati Equation 

(SDRE) control framework. Kharola et al [9] discussed a fuzzy logic control strategy for control and 

stabilization of TWIP. 

Most of the controllers mentioned above are model-based, which can be classified as either linear or 

nonlinear controllers. Mostly linear controllers are simple to design and easy to implement, but the 
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performance level is limited due to approximations, while most of nonlinear controllers performed better but 

are complex to design and difficult to implement. Using T-S fuzzy model-based control, it is possible to 

combine the advantages of both linear and nonlinear controllers (i.e. simplicity and better performance). 

A T-S fuzzy model can effectively represent the system dynamics of a nonlinear system such as TWIP 

mobile robot using linear rule consequence, which makes it easier to apply linear control techniques in the 

analysis and control synthesis for the system. Numerous works on the stability analysis and control synthesis 

of T-S fuzzy model-based control systems have been reported in literature [10-12]. 

This paper applies the T-S fuzzy technique to design a fuzzy tracking controller for balancing and 

velocity control of a TWIP mobile robot. The controller design is based on a fuzzy Lyapunov function and a 

non-PDC control law. The main contribution of this paper is the development of a fuzzy model based state 

feedback control scheme, which guarantees global stability and provides desired transient behavior for T-S 

fuzzy model-based controlsystems, based on which a fuzzy model-based tracking controller for the balancing 

and velocity tracking control of a TWIP mobile robot is developed. 

The rest of the paper is organized as follows: In Section two the dynamic model of the TWIP mobile 

robot is presented. Section three presents the fuzzy modeling of the TWIP mobile robot, whereas section four 

presents the fuzzy controller synthesis. The velocity tracking controller design is presented in section five. 

In section six the simulation results are presented and finally the conclusion is made in section seven. 

 

 

2. DYNAMIC MODEL OF THE TWIP MOBILE ROBOT 

The model considered in this paper is based on the TWIP mobile robot presented in [6]. 

Using Kane’s method, the dynamical equations of motion of the TWIP mobile robot can be obtained [13-15]. 

Using the parameters in Table 1, the numerical model of the TWIP mobile robot is obtained as in (1)-(3): 

 

 

Table 1. TWIP mobile robot parameters and variables 
Symbol Parameter/Variables Value Unit 

   Mass of the main body of the TWIP mobile robot 35 kg 

   Mass of each wheel 5 Kg 

L Half of the distance between the wheels 0.20 M 

R Radius of each wheel 0.25 M 

I2 The moment of inertia of the body about n2 direction 0.649 kgm2 

I3 The moment of inertia of the body about n3 direction 1.829 kgm2 

  Gravitational acceleration 9.81 m/s2 

d Distance between the center of the wheels axis C and the center of gravity G 0.25 M 

  Dendulum tilt angle  Rad 

  Yaw angle (orientation of the robot)  Rad 

x TWIP mobile robot position  M 
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3. T-S FUZZY MODEL  
A T-S fuzzy model as proposed by Takagi and Sugeno [16] describes the nonlinear system by a set 

of IF THEN rules with fuzzy sets as antecedents and linear models as the consequents. The overall fuzzy 

model can then be obtained by fuzzy blending of the linear models. The thi  rule of the T-S fuzzy model as 

described in [17] and the final outputs of the fuzzy systems are inferred as follows: 
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The term    (  ( )) is the grade of the membership function of   ( ) in    . 

 

3.1. T-S fuzzy model of TWIP mobile robot  

This fuzzy model considered in this paper is based on the T-S fuzzy model of the TWIP mobile 

robot developed in [18], which is derived from nonlinear dynamical model of the TWIP mobile robot in  

(1)-(3). It has been proven that the orientation of the TWIP is independent of the dynamics of the system 

[13], it depends on the external input; hence 0 . Therefore (1)-(3) can be written as in (7)-(9):  
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From the dynamical (7) and (9), the state variables that makes the system nonlinear are   and  . Therefore, 

the premise variables are:  

 
T][)(  tz

 (10) 
 

From expert knowledge  20   and  60  [18-20]. The following operating points were 

chosen for the tilt angle  : 0 , 18
 , 9

 , 6
 , 9

2 , 18
5 , 3

 . Based on the selected operating points the 14 

T-S fuzzy rules are formulated. 

 

3.2. T-S fuzzy controoller design  

The fuzzy controller design is based on the following non-PDC control law, which is proposed 
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The following fuzzy Lyapunov function is also considered in the design [17]: 
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The closed-loop system based on the non-PDC control law [11] and the T-S fuzzy model is as follows: 
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The controller design is based on the assumption that the premise variables vector and the state variables 

vector are related as follows: 
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where 1 nT R is a diagonal matrix 

The following requirement are considered in the fuzzy controller design: 

 Stabilization: This is aimed at designing a controller such that the closed-loop system in (14) is 

asymptotically stable. 

 Pole Placement: This is aimed at designing a controller such that the poles of the closed-loop system in 

(14) are located in a prescribed sub-region of the complex left-half plane, so as to achieve a desired 

transient behavior. 

Remark 1 [19-21]. The second requirement is fundamentally related to the linearized subsystems that 

comprise the given (nonlinear) system. For this reason, the actual performance will be an approximation of 

the expected based on the design strategy outlined above. 

 

3.3. LMI formulation for stabilization 

The time derivative of the fuzzy Lyapunov function in Equation (13) along the trajectories of the  

T-S fuzzy model is obtained as: 
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Based on the derivation, the LMIs can be written as [20-25]: 
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3.4. LMI formulation for pole-placement constraint  

Stabilization alone is not enough to give satisfactory transient performance. Therefore, to get 

satisfactory transient response of the closed loop system, the closed loop poles have to be placed in a 

prescribed sub-region (LMI region) of the complex left half plane. LMI regions are subset of the complex 

plane, which are convex and symmetrical with respect to real axis [20-23]. In this work, the LMI region in 

Figure 1, which is the intersection of disc centered at origin with radius r and a conic sector with apex at 

origin and inner angle 2θ, is considered for placing the closed loop poles. Consider the following linear 

dynamic system and the common quadratic Lyapunov function respectively: 
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According to Chilali and Gahinet Theorems [19] the system in Equation (21) based on the Lyapunov 

functions in Equation (22) is D stable (all the poles of the system lie in the LMI region of Figure 1, if and 

only if there exist a symmetrical positive definite matrix P. The Theorems in [19] were extended to fuzzy 

control systems in [23-27] . 

 

 
 

Figure 1. LMI region (D) for pole placement 

 

 

Remark 2 [22]. The D-stability constraints are applied to the local subsystems, not to the global system, 

therefore, the locally-available Lyapunov functions can be used which are independent of the proposed fuzzy 

Lyapunov function because there can exist many Lyapunov function showing the stability of the subsystems.  

The ith local subsystem of the closed-loop T-S fuzzy model [14] can be written as: 
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Consider the following local quadratic Lyapunov function: 
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Hence, using the local quadratic Lyapunov function in Equation (24) and the concept of D-stability 

presented, the constraint to place the poles of the ith subsystem in Equation (23) in the LMI region of Figure 

1 can be expressed in terms of LMIs as: 
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From the results obtained the following theorem can be established: 

Theorem 2: The closed-loop fuzzy model based system (14) is D-Stable (all the poles of the subsystems of 

system (14) lie in the LMI region of Figure 1 if there exist matrices q

i

T

ii
PP

1
0


 and  q

ii
N

1
 satisfying 

the following LMI’s: 
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Remark 3 [19]. The D-stability constraints are usually used as supplementary constraints, hence constraints 

of the LMI region to both cases i = j and i < j may not be necessary: it suffices to locate the poles of the 

dominant terms (in the case of i = j) in the prescribed LMI regions. 

 

3.5. Fuzzy state feedback controller synthesis 

The synthesis of fuzzy state feedback control system that guarantees stability and satisfies additional 

constraints on the closed-loop pole location is considered. Combining Theorems 1 and 2 results in Theorem 

3, which provides LMI formulation of fuzzy state feedback synthesis that ensures global stability and gives 

desired transient behavior. 

Theorem 3: The fuzzy model based system in Equation (14) can be stabilized by the non-PDC controller in 

(11) with all the poles of the subsystems of the closed-loop system located in the LMI region of Figure 1, 

if there exist a scalar 0 , and matrices  q
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4. FUZZY TRACKING CONTROLLER DESIGN 

This is a state feedback tracking controller which is based on the fuzzy state feedback control law in 

Equation (19). It consists of the stabilization part and the tracking part. The block diagram of the tracking 

control system is shown in Figure 2, where )(tx is the state vector, )(tu  is the control input vector, )(tr  is 

the reference input vector and )(ty  is the output vector. The velocity tracking control law used is: 
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Figure 2. Tracking control system 

 

 

5. SIMULATION 

To investigate the balancing and tracking performance of the proposed controller, simulations were 

carried out. The TWIP is required to balance itself and track a reference velocity. The parameter settings are 

shown in Table 2 while the tilt angle, velocity and orientation responses under step command are shown in 

Tables 3, 4 and 5 respectively.  
 
 

Table 2. Parameter settings for simulation condition 
Condition/Parameter Condition  

Desired velocity (m/s) 2 
Initial velocity (m/s) 0 

Desired tilt angle (rad) 0 

Initial tilt angle (rad) π/6 
Desired orientation (rad) π/6 

Initial orientation (rad) 0 
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Table 3. Tilt angle response under 

step command 
Controller Settling 

time (s) 

Overshoot 

(%) 

Fuzzy 3.4 0 

Nonlinear 12.5 19 
 

Table 4. Velocity response under 

step command 
Controller Settling 

time (s) 

Overshoot 

(%) 

Fuzzy 3.8 0 
Nonlinear 12.5 32.7 

 

Table 5. Orientation response 

under step command 
Controller  Settling 

time (s) 

Overshoot 

(%) 

Fuzzy  4.2 0 
Nonlinear  1.4 45.72 

 

 

 

Based on the simulation results shown in Figures 3-5, settling times of 3.4, 3.8 and 4.2 seconds for 

the tilt angle, velocity response and robot orientation respectively using the fuzzy controller have been 

recorded. The non-liner controller shows a lagging 12.5 seconds for both the tilt angle and the velocity 

response which indicated the superior performance of the fuzzy controller over the non-linear controller in 

that region. For the robot orientation a settling time of 1.4 seconds results using the non-linear controller 

while the fuzzy controller lags with 4.2 sec, thus, showing the superior performance of the non-linear 

controller over the fuzzy. No overshoots were recorded for all the cases using the fuzzy controller as against 

overshoots of 19, 32.7 and 45.72 observed with the non-linear controller. Conclusively, the fuzzy controller 

also shows a marked stability as shown in all the Figures 3-7 with no oscillatory responses while the non-

linear controller indicated some oscillations. 

 

  
  

Figure 3. Tilt angle response under step command Figure 4. Velocity response under step command 

  

  

  
  

Figure 5. Robot orientation under step command Figure 6. Control input for wheel 1 under  

step command 
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Figure 7. Control input for wheel 2 under step command 

 

 

6. CONCLUSION 

The T-S fuzzy model of the TWIP mobile robot was developed from its nonlinear dynamical 

equations of motion using 14 fuzzy rules. Based on continous T-S fuzzy model, stabilization conditions with 

constraints on the closed-loop poles location were established in the form of linear matrix inequalities. 

The established stabilization conditions guaranteed the stability of the system and gives desired transient 

behavior. Based on the developed T-S fuzzy model and the established stabilization conditions, a velocity 

tracking controller was proposed for the balancing and velocity tracking of the TWIP mobile robot. 

The balancing and tracking performance of the proposed controller was investigated via simulation, and the 

results were compared with those from a nonlinear controller. The results show that the controller was able to 

track a reference velocity while keeping the TWIP mobile robot balanced. The results also demonstrate that, 

the proposed controller gives better transient performance and require less controlled input signal compared 

to the nonlinear controller 
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