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 This paper proposes a new wavelet family based on fractional calculus.  

The Haar wavelet is extended to fractional order by a generalization  
of the associated conventional low-pass filter using the fractional delay 

operator 𝑍−𝐷. The high-pass fractional filter is then designed by a simple 

modulation of the low-pass filter. In contrast, the scaling and wavelet 
functions are constructed using the cascade Daubechies algorithm.  

The regularity and orthogonality of the obtained wavelet basis are ensured by 

a good choice of the fractional filter coefficients. An application example  

is presented to illustrate the effectiveness of the proposed method. Thanks to 

the flexibility of the fractional filters, the proposed approach provides better 
performance in term of image denoising. 
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1. INTRODUCTION 

The main purpose of signal processing is to describe signals related to the real world for the purpose 

of processing, identifying, compressing, understanding or transmitting. In this context, wavelets have always 

played a very important role, and we no longer count the applications that use them. It is a  tool allows 

analyzing and locating the discontinuities of a signal along one or two dimensions and at different scales. 

This feature is used to solve many problems, such as image compression and restoration  [1].  

Since their introduction, the wavelets have been very rapidly developed and have attracted  

the attention of many researchers. Solid mathematical foundations (basis) were quickly put into place for  

the notions of an orthogonal basis [2], multiresolution analysis [3-5] and wavelets with compact support [6], 

giving birth to several real, complex and fractional wavelet families [1]. However, identification of an 

adequate analyzing wavelet remains an important problem. No single wavelet has been adapted to all cases. 

For some applications, it is possible that no suitable wavelet exists among the known wavelets. In such cases, 

it is necessary to try to build a new wavelet adapted to the specific problem to be addressed.  

Thus, many studies have appeared whose purpose is to build wavelets which have more elegant 

mathematical properties and are more efficient. Among the wavelets which are currently of considerable 

interest those based on fractional calculus. The main advantage of having a fractional order is flexibility, 

which allows adjustments in transform parameters such as regularity and localizat ion of the base  

functions [5]. These advantages can be exploited to improve several approaches and ameliorate problems 

such as denoising by thresholding wavelet coefficients [1]. The idea of fractional wavelets was first proposed 
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by Mendlovic [7] in the context of optical signal processing, where they were defined as a cascade  

of the classical wavelet transform and the fractional Fourier transform (FRFT) [8]. Shortly thereafter,  

Huang and Suter [9] proposed a fractional version of the wave packet transform (FRWPT), based on 

combining FRFT and the wave packet transform (WPT). Due to a lack of physical interpretation  

and the complexity of the calculation, the FRWPT unfortunately did not receive much attention.  

However, several years later, the idea was extended in the context of spline wavelets to non-integer  

degrees [10]. Quincunx wavelets have also been generalized to non-integer orders with a construction based 

on fractional Quincunx filters, which are generated through the diamond McClellan transform [11].  

Several fractional wavelet models have recently been proposed and developed, with a wide  

range of applications [12˗16].  

The aim of the present paper is to introduce the new fractional wavelet (NFRW), which we consider 

a generalization of the Haar wavelet [1]. However, this idea can also be extended to generalize other wavelet 

families. The construction generally begins with the choice of a low-pass digital filter with the orthogonality 

property checked in Fourier or direct space; then it is generalized through the fractional delay (FD) Z-D [17] 

while ensuring correct properties of orthogonality, compact support and regularit y. The high-pass filter can 

then be built from the low-pass filter, and the associated scaling function and wavelet can be deduced.  

To illustrate the potential of the proposed wavelet, we present a denoising application on images.  The rest of 

this paper is organized as follows. Section 2 briefly defines the discrete wavelet transform (DWT) and 

introduces the relation between multiresolution analysis and filter banks. Section 3 proposes the NFRW. 

Section 4 examines and simulates an experimental application of the NFRW. Finally, section 5 presents  

concluding remarks. 

 

 

2. DISCRETE WAVELET TRANSFORM AND FILTER BANKS 

The DWT is a multiresolution/multifrequency representation. This tool separates the data, functions 

or operators in frequency components according to a resolution adapted to the scale. The multiresolution 

analysis developed by Mallat [5] connects the DWT and filter banks in an elegant way, with the DWT 

considered as a process of decomposing the signal into approximations and details. The original signal 𝑥[n] 

passes through two complementary low-pass and high-pass filters  ℎ̃[n] and  𝑔[n], followed by a factor 2 

subsampling, and emerges as two signals: the approxima tion signal A and the detail signal D,  

respectively [5]. Figure 1 illustrates this principle. The reconstruction is performed by low-pass and high-pass 

synthesis filters ℎ̅[n] and 𝑔̅[n], preceded by a factor 2 upsampling, as illustrated in Figure 2. 

 

 

  
  

Figure 1. One-dimensional 

wavelet decomposition 

Figure 2. One-dimensional wavelet reconstruction 

 

 

The filter bank ensures a perfect reconstruction if and only if [18] 

 

 

(1) 

           

Where 𝐻, 𝐺, 𝐻 and 𝐺̅ are, respectively, the transfer functions of the low-pass and high-pass analysis 

and the synthesis filters. In the case of an orthogonal basis, the high -pass filter is a  modulated version of  

the low-pass filter; however, the analysis and synthesis filters are identical up to a central symmetry. 
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Moreover, the orthogonal wavelet transform is generally characterized by a scaling function 𝝋 and 

wavelet 𝝍 (for more details see [19]), where the scaling function can be expressed in terms of the low-pass 

filter by the equation  

 

𝜑(𝑥) = ∑ ℎ̃[𝑛]√2𝜑(2𝑥 − 𝑛).𝑛        (2) 

 

In contrast, the wavelet function decomposes at the lower scale based on the scaling functions and can be 

expressed in terms of the high-pass filter by the equation  

 

𝜓(𝑥) = ∑ 𝑔[𝑛]√2𝑛  𝜑(2𝑥 − 𝑛).       (3) 

 

 

3. PROPOSED DISCRETE FRACTIONAL WAVELET STRUCTURE  

From a structural point of view, the DWT is identical to an iterated filter bank, which gives  

it a  multiresolution character, so we can use a fractional filter to implement a fractional discrete wavelet as 

shown in Figure 3; indeed, based on fractional operators, we can build fractional filters which lead to 

wavelets with interesting properties (precision, flexibility, regularity, etc.). 

In this paper, we have chosen the Haar filter as the starting point for our construction; this is an 

orthogonal FIR filter which has a linear phase, one vanishing moment and a finite support. It is generalized 

using a fractional delay (FD) 𝑍 −𝐷, which is simulated by a filter which we call the “fractional delay filter” 

(FDF). We can then build the high-pass fractional filter from the low-pass fractional filter and deduce  

the associated scaling function and wavelet by the cascade algorithm [6]. A perfect reconstruction is ensured 

by fractional synthesis filters, built in accordance with the conditions of (1). 

 

 

 
Figure 3. One-dimensional fractional wavelet decomposition and reconstruction  

 

 

3.1.  Fractional filter design 

The transfer function of the low-pass filter associated with the Haar analysis is described by 

 the equation [20]  

 

𝐻(𝑧) =
(1+𝑧−1)

√2
         (4) 

 

We propose a generalization of this function to a fractional order by exploiting the fractional operator Z-D
 

with D considered to be a real number: 

 

𝐻𝑓̃ (𝑧) =
(1+𝑧−𝐷)

√2
         (5) 

 

This function can be written in a more general way as follows:  

 

𝐻𝑓̃
(𝑧) = 𝐴 + 𝐵 ∙ 𝑍 −𝐷        (6) 

 

where 𝐷 ∈ ℝ is the filter order, and 𝐴 ∈ ℝ and 𝐵 ∈ ℝ are the coefficients. The orthogonality and regularity 

of the scaling function and wavelet are ensured by a good choice of the coefficients A and B. In the classical 

case, D=1, 𝐴 = 1 √2⁄  and 𝐵 = 1 √2⁄ .  
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In contrast, it should be noted that the fractional order digital delay 𝑍 −𝐷 is represented by an 

irrational function in which the impulse response is infinitely long. This is similar to a non-causal filter for 

any finite shift in time, which makes its implementation an unrealizable task [17] and implies a very limited 

implementation for the transfer function of the fractional filter  𝐻𝑓̃. Therefore, it is necessary to use 

approximation techniques to obtain a realizable implementation of the FD and, obviously, a  rational 

representation for the transfer function of the fractional filter  𝐻𝑓̃. The majority of the design techniques 

which have been proposed in the literature to approximate the FD focus exclusively on finite impulse 

response (FIR) and infinite impulse response filters (IIR) [17]. In this paper, we focus on the FIR filter due to 

its easy implementation and good approximation. 

 

3.1.1. Fractional delay approximation using FIR filters 

The transfer function of the FIR filter approximating the FD 𝑍 −𝐷 is given by [17]: 

 

𝐻(𝑍) = ∑ ℎ[𝑛] 𝑍 −𝑛𝑁
𝑛=0 ,        (7) 

 

where N is the order of the filter and ℎ[n], n=0,1,...N, are the real coefficients which form the impulse 

response of the FIR filter.  

Several techniques have been developed to identify the coefficients h[n], such as windowing 

methods, maximally flat FIR a pproximation (Lagrange interpolation), FIR filter design with a smooth 

transition band function, the minimax or Chebyshev method, and the stochastic method. More deta ils a bout  

these can be found in [17]. In the present paper, we choose the method based on Lagrange interpolation,  

due to the ease of calculating filter coefficients from a closed form equation and also because the filter 

obtained by this method has a completely flat magnitude frequency response at low frequencies.  

Indeed, the Lagrange interpolation is one of the simplest and most efficient methods for designing an FIR 

filter approximating the FD 𝑍 −𝐷. The FDF coefficients are given by [17]: 

 

ℎ[𝑛] = ∏ 𝐷−𝑘

𝑛 −𝑘

𝑁
𝑘=0
𝑘≠𝑛

            𝑓𝑜𝑟 𝑛 = 0,1,2, … 𝑁      (8) 

 

where N is the order of the filter and D is the desired delay, 

 
𝑁−1

2
≤ 𝐷 ≤

𝑁+1

2
              𝑓𝑜𝑟 𝑜𝑑𝑑 𝑁        

 

such that          (9) 

 
𝑁

2
− 1 ≤ 𝐷 ≤

𝑁

2
+ 1             𝑓𝑜𝑟 𝑒𝑣𝑒𝑛  𝑁.       

 

 

Using (7), we draw up Table 1, which groups the coefficients for Lagrange FD filters of order  

 N=1, 2 and 3. 

 

 

Table 1. The coefficients of the Lagrange fractional delay filters of order N=1, 2 and 3 
 h[0] h[1] h[2] h[3] 

N=1 1-D D   

N=2 (D-1)(D-2)/2 -D(D-2) D(D-1)/2  
N=3 -(D-1)(D-2)(D-3)/6 D(D-2)(D-3)/2 -D(D-1)(D-3)/2 D(D-1)(D-2)/6 

 

 

3.1.2. Fractional filter bank approximation 

Following the approximation of the FD 𝑍 −𝐷 by an FIR filter, the transfer function of the fractional 

filter 𝐻𝑓̃  (6) is represented by the following function: 

 

𝐻𝑓̃
(𝑧) ≈ 𝐴 + 𝐵 ∙ (∑ ℎ[𝑛]𝑍 −𝑛).                                                              𝑁

𝑛 =0    (10) 
 

Where h(n) and N are respectively the coefficients and the order of the FIR filter approximating  

the FD 𝑍 −𝐷, and A and B are the coefficients of the fractional filter which constitutes the wavelet. In order to 

ensure the orthogonality and regularity of the scaling function and the wavelet, the coefficients A and B are 

chosen according to the following conditions [2-3], [21]: 
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∀ 𝜔 ∈  ℝ, |𝐻𝑓̃
(𝜔)|

2
+ |𝐻𝑓̃

(𝜔 + 𝜋)|
2

= 2,      (11) 

 

𝐻𝑓̃
(0) = √2,         (12) 

 

|𝐻𝑓̃
(𝜋)| = 0.         (13) 

 

Condition (11) is a constraint corresponding to the orthonormality of the scaling function, and it also 

means that the filter 𝐻𝑓̃  is a  conjugate mirror filter [22]. Condition (12) is a simple normalization, and 

condition (13) ensures the regularity of the scaling functions and wavelets. There exist only a few solutions 

for identifying A and B while respecting these three conditions. In this paper, we calculate A and B while 

ensuring that conditions (12) and (13) hold; however, condition (11) is provided only approximately, i.e.: 

 

|𝐻𝑓̃
(𝜔) |

2
+ |𝐻𝑓̃

(𝜔 + 𝜋)|
2

≈ 2,       (14) 

 

|𝐻𝑓̃
(𝜔) |

2
+ |𝐻𝑓̃

(𝜔 + 𝜋)|
2

− 2 = 𝜀.       (15) 

 

The coefficients A and B of the fractional filter 𝐻𝑓̃  are given in Table 2 for N=1, 2 and 3. 

The error 𝜀 is very small and does not have dramatic effects on our construction, while the fractional 

filter 𝐻𝑓̃  generates regular orthogonal bases for  0.5 < 𝐷 < 1.7, which implies a limitation of the FD order to 

the interval [0.5, 1.7]. Beyond this interval, the accuracy of the calculation can cause problems,  

and the orthogonality of the obtained bases is lost. 

 

 

Table 2. Fractional filter coefficients for different values of N 
 A B 

N=1 √2 −
√2

1 − (ℎ[0]− ℎ[1])
 

√2

1 − (ℎ[0]− ℎ[1])
 

N=2 √2 −
√2

1 − (ℎ[0]− ℎ[1] + ℎ[2])
 

√2

1 − (ℎ[0]− ℎ[1]+ ℎ[2])
 

N=3 √2 −
√2

1 − (ℎ[0]− ℎ[1]+ ℎ[2] − ℎ[3])
 

√2

1 − (ℎ[0]− ℎ[1]+ ℎ[2] − ℎ[3])
 

 

 

According to the above table, the fractional filter 𝐻𝑓̃  is represented by a finite number of non-zero 

coefficients, i.e. it is a  filter with compact support, where the number of coefficients is directly related to  

the FD filter order (length of filter 𝐻𝑓̃=FD filter order + 1). The regularity of the scaling function  

and the wavelet are ensured as long as the zero of 𝐻𝑓̃ (𝜔) at 𝜔 = 𝜋 has an order of at least 1 [21]. 

On the other hand, as indicated above (in section 2), the high-pass fractional filter is a  modulated 

version of the low-pass filter, where the transfer function is defined by the property of quadrature mirror 

filters [23]; its coefficient is given by the following expression:  

 

𝑔𝑓̃
[𝑛] = (−1)𝑁−𝑛ℎ𝑓̃

[𝑁 − 𝑛].       (16) 

 

However, the synthesis filters (H and G) are constructed according to (1), and their coefficients  

are defined as follows:  

 

ℎ̅𝑓
[𝑛] = ℎ𝑓̃

[𝑁 − 𝑛] ,        (17) 

 

𝑔𝑓̅
[𝑛] = 𝑔𝑓̃

[𝑁 − 𝑛] .        (18) 

 

The frequency responses of the analysis and synthesis filters (𝐻, 𝐺, 𝐻 and 𝐺̅) are adjusted by  

the variation of the parameter D, as shown in Figure 4. It can be seen that the generalization of these filters 

through the fractional operator Z-D leads to more flexible filters with better precision, allowing a continuous 

adjustment of the key parameters of the filters. 
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(a) (b) 

 

  
  

(c) (d) 

  

Figure 4. Frequency responses of analysis and synthesis filters for N=2 and D=0.5 1.5: (a) low-pass analysis 

filter, (b) high-pass analysis filter, (c) low-pass synthesis filter, (d) high-pass synthesis filter 

 

 

3.2.  Fractional scaling function and fractional wavelet 

The construction of the scaling and wavelet functions is ensured by the cascade algorithm [6].  

They are respectively represented in terms of the low-pass and high-pass filters ℎ̃𝑓  and 𝑔𝑓  by  

the following expressions: 

 

𝜑𝑓
(𝑥) = ∑ ℎ̃𝑓𝑛

[𝑛]√2𝜑𝑓
(2𝑥 − 𝑛),       (19) 

 

𝜓𝑓
(𝑥) = ∑ 𝑔𝑓𝑛

[𝑛] √2𝜑𝑓
(2𝑥 − 𝑛).       (20) 

 

Figure 5 presents the scaling and wavelet functions for different values of D: 0.5, 0.8, 1, 1.1, 1.3 and 1.5.  

It can be seen that these functions gain in regularity with the increase of the parameter D, until the value 

D=1.7, where the orthogonality of the obtained base is completely lost. 
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Figure 5. The fractional scaling and wavelet functions for different values of D 

 

 

4. APPLICATION AND RESULTS 

In this section, to illustrate the potential of the proposed wavelet, some results of using the proposed 

fractional wavelet in image denoising algorithm are presented. The denoising algorithms, which threshold 

wavelet coefficients, are based on an estimation of the noise variance. This estimation is obtained according 

to a statistical calculation performed on the wavelet coefficients at the first scale. The threshold computed 

from this estimation is then applied at each scale to denoise the image (for more details see [24]). 

In the context of dyadic analysis, an adaptive threshold selection using Stein's unbiased risk estimate 

(SURE) principle and hard thresholding [25], the denoising algorithm is applied to a set of 8 -bit gray scale 

images: Lena , boat, cameraman and building as shown in Figure 6, corrupted by simulated additive Gaussia n  
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white noise with standard deviations of 10, 20 and 30. The wavelet basis proposed in this paper (generalized 

Haar) is exploited for different values of D, where the ordinary case is D=1. 

 

 

    
    

Figure 6. Input images (Lena, boat, cameraman and building) 

 

 

To evaluate and measure the quality of the restoration, the peak signal-to-noise ratio (PSNR) is computed 

(with MATLAB® coding). It is defined for a B-bit gray scale level by the equation 

 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
(2𝐵 −1)

2

𝑀𝑆𝐸
).       (21) 

 

where MSE is the mean square error between the initial image (without noise) and the denoised image.  

The PSNR results after denoising are reported in Table 3, for different values of the parameter D.  

Figure 7 presents the PSNR variations of the Lena, building, cameraman and boat image denoising with three 

different noise levels using the proposed wavelet basis with different values of D. 

  

 

Table 3. PSNR (dB) results of denoising images with Gaussian noise with standard deviations σ=10, 20 and 

30, using several values of D. 
PSNR denoised image (dB) 

Input 
image 

σ/PSNR 
noised 

image 

D=0.5 D=0.6 D=0.7 D=0.8 D=0.9 D=1 D=1.1 D=1.2 D=1.3 D=1.4 D=1.5         
D=1.6 

Lena 
512x5

12 

σ=10/ 20.00 21.89 22.16 22.86 23.44 24.15 24.95 26.23 27.36 27.81 28.13  
28.43 
27.65 

σ=20/ 13.98 16.58 17.00 17.60 18.25 18.93 18.93 21.10 22.29 22.88 23.43  
23.86 
22.89 

σ=30/ 10.46 13.21 13.74 14.45 15.22 15.98 15.98 17.77 19.00 19.51 20.18  
20.67 
19.56 

             

Buildi
ng 

512x5
12 

σ=10/20.00 18.64 18.84 19.33 20.08 21.28 22.60 23.36 23.69 23.83 23.71  
23.81 

23.58 

σ=20/13.98 15.55 16.22 16.73 17.29 17.99 18.72 19.82 17.14 21.04 21.35  
21.59 
21.01 

σ=30/10.46 13.13 13.62 13.62 14.87 15.51 15.85 17.14 18.20 18.61 19.11  
19.43 

18.63 
             

Came
raman  
256x2

56 

σ=10/20.02 18.29 18.81 19.65 20.20 20.92 23.18 24.15 24.59 24.61 24.36  
24.46 

21.30 

σ=20/13.97 15.81 16.28 16.91 17.40 18.07 18.07 20.12 21.05 21.32 21.66  
21.94 
18.74 

σ=30/10.45 

 
13.46 13.54 14.11 14.89 15.52 15.52 17.28 18.44 18.71 19.31  

19.63 

18.74 
             

Boat 

512x5
12 

σ=10/20.00 
 

20.87 21.64 21.79 22.55 23.06 24.22 25.29 26.10 26.39 26.51  
26.71 
26.18 

σ=20/13.98 16.35 16.79 17.44 17.94 18.64 19.44 20.77 21.88 22.31 22.82    
23.18 
22.30 

σ=30/10.46 13.04 13.55 14.24 15.04 15.81 16.21 17.60 18.83 19.30 19.92  
20.36 
19.33 
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Figure 7. Presents the PSNR variations of the Lena, building, cameraman and boat image denoising 
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As can be seen, the best value of the PSNR for all images with different noise densities corresponds 

to a fractional value of the parameter D, which indicates that the fractional analysis leads to an improvem en t  

in the denoising result due to the flexibility of the fractional filters which constitute the proposed wavelet 

basis. Moreover, it can be seen in the denoising results for the images Lena, boat, cameraman and building as 

shown in Figure 8 that the use of fractional calculation through the FD 𝑧−𝐷 offers considerable performance 

improvement in terms of visual quality, especially because the  noise is eliminated with significant 

preservation of edge sharpness. 

 

 

      
Noisy image D=0.8 D=1 

   

      
D=1.1 D=1.3 D=1.5 

   

      
Noisy image D=0.8 D=1 

   

 
 

 
 

 
 

D=1.1 D=1.3 D=1.5 
 

Figure 8. Comparison of the visual quality of the images lena, boat, cameraman and building  

for different values of D 
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Noisy image D=0.8 D=1 

   

      
D=1.1 D=1.3 D=1.5 

   

      
Noisy image D=0.8 D=1 

   

      
D=1.1 D=1.3 D=1.5 

   

Figure 8. Comparison of the visual quality of the images lena, boat, cameraman and building  

for different values of D (continue) 

 

 

5. CONCLUSION 

In this paper, we have introduced a generalization of the Haar wavelet using fractional operators, 

where the construction is based on exploiting the FD 𝑍 −𝐷, approximated by an FIR filter. Variation of  

the parameter D provides greater flexibility for the fractional filters which constitute the wavelet, leading to 

more precise decomposition (in terms of detail and approximation). To illustrate the effectiveness of  

the proposed fractional wavelet (generalized Haar), we have presented the results of using a denoising 

application on images. The results are very promising, and this idea can be expanded to generalize other  

families of wavelets. 
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