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 This paper presents an algorithm called Failure-Aware Workflow Scheduling 

(FAWS). The proposed algorithm discussed in this paper schedules parallel 

applications on homogeneous systems without sacrificing the two conflicting 

objectives: reliability and makespan. The proposed algorithm handles 

unexpected failure causes rescheduling of the failed task to available 

resources. In order to analyse the performance of the FAWS algorithm, it 

will be compared with the popular scheduling algorithm namely 

Heterogeneous Earliest Finish Time (or HEFT) and Critical Path (CP). A 

simulation-driven analysis based on realistic workflow application was 

demonstrated using DAG graph as a continuation of the Layered Workflow 

Scheduling Algorithm (LWFS). The FAWS algorithm aims to minimize the 

makespan, increases reliability and therefore boosts the performance of the 

whole system. A workflow generator was developed to generate large task 

graphs randomly and scheduled the parallel applications. Based on the 

simulation results, the proposed algorithm has improved the overall 

workflow scheduling effectiveness in comparison with existing algorithms. 

Keywords: 

Makespan 

Reliability 

Workflow scheduling 

Copyright © 2019 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Maslina Abdul Aziz,
 

Faculty of Computer and Mathematical Sciences, 
Universiti Teknologi MARA Malaysia,

 

Shah Alam, Malaysia. 

Email: maslina@tmsk.uitm.edu.my 

 

 

1. INTRODUCTION 

Many large industrial companies are seeking alternatives to reduce costs, find cheaper ways to 

develop new services and products as annual costs soar. These companies operate in a dynamic environment 

where time and cost are the main factors. Moreover, they are at risk to threats and unforeseen incidents. This 

will because companies re-plan and revise their scheduled plans, cost estimates, risk responses, and others. 

These problems are unavoidable, but companies need to be able to minimize the risks. Based on research on 

critical issues and challenges of complex industrial systems, companies can automate their business process 

and minimize the probability of system failure with the use of workflow scheduling. Among other benefits, it 

improves efficiency, decision making and process control, and results in better customer service. 

One of the main problems with scheduling is finding the optimal schedule. Having an optimal 

schedule is very challenging because each schedule varies according to its domain and constraints. Since 

scheduling involves resources, many studies have been carried out on optimizing resource efficiency of 

workflow schedules involving the homogeneous and heterogeneous issues [1-3]. Makespan can be defined as 

execution time of a workflow or the length of a schedule. Makespan is also known as deadline. A workflow 

needs to execute tasks to the assigned processors according to schedule with minimum completion time. 

Therefore, the main objective is to execute all tasks to the designated resources with-in the given time. Time 

constraint need to be minimized in the best-effort manner. 

mailto:maslina@tmsk.uitm.edu.my


                ISSN: 2302-9285 

Bulletin of Electr Eng and Inf, Vol. 8, No. 1, March 2019 :  283 – 290 

284 

Due to the rapid evolution of technology, the need for a large number of complicated applications 

has increased. Therefore, the Quality of Service (QoS) of service-based systems are becoming increasingly 

complex [4, 5]. Workflow QoS is composed of different dimensions that are used to characterize workflow 

schema and instances [6]. Other important QoS parameters highlighted are energy, reliability, and time. Most 

previous research in workflow scheduling [7-12] are based on limited number of constraints and objectives. 

Usually, they focused on meeting the deadline or minimizing the makespan. Therefore, they are not adaptable 

in finding the best trade-offs. Workflows performance can be improved by applying effective scheduling 

strategies that comprise of calculating and choosing the best task-resource mappings without sacrificing the 

quality of service objectives. 

When executing tasks, workflow application will be scheduled corresponding to the resources 

available. Thus, the scheduling algorithm or the scheduler will decide which resources will execute the tasks 

with the goal of minimizing the probability of failure of the application. Due to these issues, this research 

proposed an algorithm that look for a set of trade-offs between these constraints (reliability and makespan). 

Large complex processes have high uncertainty that requires multi-objective solutions to solve [9]. A 

complex application has large number of tasks and therefore it is difficult to schedule. When failure occurs, 

tasks need to be rescheduled. However, reassigning task is a challenge, since it is important to re-assign the 

tasks using minimum number of resources [13-15]. Some considerations about rescheduling taks are time 

requirements and constraints imposed by the service provider for the resource capability [16]. 

Even though recent studies have suggested and highlighted a number of solutions of improving 

workflow scheduling performance, however, little attention has been made on to how to optimize the 

workflow application performance without sacrificing the system reliability. The aim of this workflow 

scheduling algorithm is to evaluate the performance of the scheduling algorithm that minimizes the total 

execution time, increases reliability and therefore boosts the performance of the whole system. Therefore, it 

will improve the workflow scheduling efficiency and the task execution. The objectives are to minimize the 

makespan and to maximize the reliability of the workflow application. This paper focus on multi-objectives 

solutions that improves the performance and the reliability of the workflows. 

 

 

2. RESEARCH METHOD 

This section continues with a brief discussion of the new proposed scheduling algorithm called the 

Failure Aware Workflow Scheduling (FAWS) Algorithm. The comparison of our proposed algorithm is done 

based on the experiment using DAG graph as a continuation of the earlier algorithm Layered Workflow 

Scheduling Algorithm (LWFS). This algorithm basic idea is using the execution time of the workflow 

schedule as the parameter. As shown in the algorithm below, all available processor that is checked on for 

current backup. The checking process has three main steps. The FAWS algorithm performance is tested 

based on the simulation using synthetic workflow. The experiment will compare in terms of fault tolerance of 

the proposed algorithm based on given cases. The task scheduling process will be reassigning the tasks to 

available resources. However, research proven that the optimization goal is to re-assign the tasks using 

minimum number of resources [17, 18]. 

The contribution addressed in this research is to solve reliability workflow scheduling problem. The 

aim is to design a reliability-aware scheduling algorithm that is capable of workflow execution within ε 

makespan deterioration. Reliability has become another extremely important issue in workflow scheduling. 

The reliability-aware scheduling of a workflow application is to maximize the reliability and minimize the 

makespan of the application.  

Given 𝒲 = {𝓌1, 𝓌1, … 𝓌w} be set of workflows and ℛ = {r1, r2, … , rm} be a set of homogenous 

resources such that each 𝑟1 ∈ ℛ can experience one or more crash failures at any given time. It is assumed 

that the communication network is failure-free and a host 𝑟𝑖 ∈ ℛ can communicate with arbitrary other hosts 

at the full bandwidth of their network interface. 

The challenge addressed on how to schedule the 𝒲 workloads on the ℛ resources such that the 𝒲 

workflows complete within the deadline and reliability requirements but makes use of minimum number of 

resources. 𝒲ti,rj
 Indicating that if task ti is assigned to resource rj. This scheduling problem can be 

formulated as follows: 

 

max R rely                                       (1) 

 

s. t.   ∑ 𝒲𝓌i,rj
= 1          𝓌1 ∈ 𝒲, rj ∈ ℛ  n

i=1                             (2) 

 

∑ 𝒲(𝓌i,rj)
≤ 𝒟     n

i=1 𝑎𝑛𝑑    ∑ 𝒲(ti,rj)
≤  Nmax     n

i=1                    (3) 
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𝒲𝓌ii,rj
∈ {0, 1}                            (4) 

 

In (1) the objective is to maximize the reliability (Rrely). The constraint in (2) ensures that each task ti ∈ 𝒯 is 

scheduled on one of the 𝑟𝑗 ∈ ℛ resources and the constraint in (3) ensures that each 𝑟𝑗 ∈ ℛ resource executes 

the tasks without exceeding the deadline 𝒟 within the maximum use of resources 𝑁. 

 

2.1.  Problem Definition  

Workflows are often used to represent and model complex distributed scientific computations [1]. A 

Directed Acyclic Graph (DAG) is the most common abstraction of a workflow. Using a DAG abstraction, a 

workflow is defined as a 𝓌(𝒯, ℒ, 𝒟) where 𝒯 = {𝑡1, 𝑡2, … , 𝑡𝑛} is a set of tasks represented by  
ℒ = {(𝑡𝑖 , 𝑡𝑗, 𝑧𝑖,𝑗) |∀ (𝑡𝑖, 𝑡𝑗) ∈ (𝑡𝑖 𝑥 𝑡𝑗)} denoting data dependencies between tasks. Each task can have one or 

more parents or children. The child task cannot start until all parents have finished. In this article, the 

workflow generator created the workflows with computarion time randomly.  

The overall process of the LWFS is depicted in the following flowchart. Figure 1 presents the 

flowchart that illustrates the segments and flow of the algorithm. The algorithm is designed to generate a new 

ranked task list based on parent-child task dependency. The algorithm consists of three parts. The first part is 

getting input form the user. The user will need to specify number of tasks and layers. When the user enters 

the number of tasks and layers, a set of tasks and dependencies will be created. The task parent-child 

dependency for each task in different layers will created. The second part is to rank the tasks based on 

number of dependencies. The tasks will be automatically distributed between the layers. The ranking of tasks 

is also based on layers of the workflow. The first node will always be the start task (tentry). The start task will 

be in Layer 1. Then this process will continue until all tasks are assigned in respective layers. The last task 

(texit) will be in the last layer. In the second phase, the 2-ways scanning and mapping of tasks is done. This 

process allows to capture the exact number of tasks dependencies for each task. The number of dependencies 

will be totalled up. Then, a new task list will be generated and ready to be scheduled. This new task list 

contains the new ranked tasks.  

 

 

 
 

Figure 1. Flowchart of FAWS algorithm 

 

 

The third part is the assignment of task to the resources. The assignment of task depends on the 

availability of the resources. The availability of resources will be checked before scheduling. If the resource 

is not available, the task will wait for the next available resource. The tasks are equally mapped to the 

resources. The task scheduled on the same resource will not incur any communication cost. Therefore, if the 
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T1 is scheduled on the R1, T2will immediately continue at R1 also. From the algorithm, a workflow generator 

is used to generate different workloads. 

 

 

3. SIMULATION  

3.1.  Simulation 1 

For the simulation studies, random tasks graph with 𝒯 = {t20, t40, t60, t80 and t100 } tasks were 

generated on a heterogeneous computing system with 5 resources ℛ = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5}. The ℛ processors are 

assumed to be fault-free and each processor 𝑟1 ∈ ℛ can only execute at most one task at a time. Each 

resource will follow the First In First Out (FIFO) queue that hold the tasks that are scheduled on the resource. 

The resources will execute each task by task ordering queue without any pre-emption. This simulation focus 

on handling failures in workflow scheduling. In order to apply the real failure situation, all the tasks 

generated for this simulation are randomly generated based on computation time for each task and the layers 

for the DAGs. The execution times of each task on the DAG graphs is assumed to be uniformly distributed 

between 5 and 20 minutes. The layers were also automatically generated based on the number of  

tasks entered.  

The task dependencies were randomly generated by the workflow generator. The new ranked list 

that are scheduled to be executed on 5 resources ℛ = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5}. This is a two-matrix table that 

calculate tasks dependencies. A new rank list will be generated.After generating the new list, these tasks will 

be queued for execution. The tasks are scheduled to resources subject to resource availability. The tasks will 

start executing based on the task’s dependency and for this simulation it depends on layers. The tasks will be 

distributed to the resources ℛ5 = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5}. Among the matrix combinations of task distribution for 

20, 40, 60, 80 and 100 with 5 resources are be shown below.  

 

 
 

For this simulation, a parallel R resources, where each resource is a processing element is subject to 

its own individual failures. When a resource suddenly stops functioning, the queued tasks need to be 

rescheduled; How to reschedule these tasks in n-1 given resources? When the resource R3 failed on the 20th 

minute, task T3 is in the queue and almost finishing. Due to the resource failure, earliest available time is 

checked for the remaining resources. Since all resources are occupied, T3  has to wait until the next available 

resource 𝑅2, after the completion of  T11 at 21 minutes. Since T11 and T3 are in the same layer two in the 

DAG graph, these tasks have the same priority. Task T3 will restart at time 22nd minute. Since T3  needs 

another 10 minutes to complete, this will extend the whole queue. When a failure happens, the algorithms 

need to optimize both makespan and reliability. 

The simulation applies checkpointing mechanism with restart mechanism. The pointers are fixed at 

time 20, 40, 60 and 80 minutes. If the pointer detects resource failure, the task will restart immediately. The 

failed task will be assigned to the next available resource. Since these tasks are dependent with each other, 

the task at the same layer can be scheduled freely as these tasks have same rank. However, as proven in the 

previous chapter, the task that has high number of children need to be scheduled first. This is because these 

are critical tasks that will delay the overall makespan. 

 

3.2.  Simulation 2 

For simulation 2, the situation happens when one of the resources fails in the middle of task 

execution and restart on current node. As compared to simulation 1, the resource failed from the middle till 

the end of the task execution. The result shows the response of resources to resource failure with respect to 

Condition 2. As it can be seen in this graph, all tasks are in the queue for execution are affected. Generally, if 

the resource stopped working, the incomplete task will be rescheduled and restart from the beginning. In this 

simulation, there are 100 tasks to be executed among 5 resources. The task distribution matrix is shown 

below. The task distribution matrix showed that R3 is the high dependent resource since there are 22 tasks 

queuing to be executed at R3. For the example below, the workflow application with 100 tasks has 12 layers. 

T3 is at layer 2. Layer 2 has 10 tasks. When resource R3 suddenly failed when executing tasks, the 

rescheduling of tasks will depend on the next available resources (FIFO) and task ranking (layer). The task 
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needs to be scheduled within the same layer. The proposed algorithm needs to ensure that tasks are executed 

successfully even when resource failure has occurred and restart in the specified period. 

 

 

4. RESULTS AND ANALYSIS 

4.1.  Simulation 1 

For this simulation, the check-pointing method are used where there will be fault-tolerant state in 

case of failure. When a resource fails, the checkpointing method will restart the execution process at the point 

of failure. The main problem us to minimize the makespan by scheduling the queued tasks in the workflow. 

One of the disadvantages of checkpointing method is it will incur extra cost. The incur cost depends on the 

number of pointers used. If the checkpointers are overly used, more cost will incur. If the checkpointers are 

insufficient, the tasks affect the overall makespan and the performance of the workflow. In this simulation, 

the workflow complexity of the simple case were tested in 2 conditions; with and without checkpointers. In 

this simulation, it compares the checkpointing method for different numbers of tasks, specifically focusing on 

impact on the makespan. Generally, the makespan increases for both scenarios (with and without 

checkpointing). Based on the result in Figure 2, it shows that the makespan of workflow application 

increased 30% from the normal scenario. It also shows that with the use of checkpointing method, the 

makespan increased 13%. 

 

 

 
 

Figure 2. Makespan comparison result for simulation 1 

 

 

4.2.  Simulation 2 

In Simulation 1, FAWS algorithm was compared to HLFET algorithm, MCP algorithm and ETF 

algorithm. In this simulation, FAWS algorithm showed an improvement in the result. The simulation was 

done using small scale workflow application with three different types of failure handling mechanism. In 

Simulation 2, FAWS algorithm was compared with HEFT [19] algorithm and CP algorithm increases in 

parallel to the increase in the size of workflow application in two different conditions. In Simulation 2, the 

impact of resource failure with recovery mechanism of different workloads was examined. It shows that if 

the resource restart after failure, the tasks can be distributed to the from 4 resources to 5 resources. Based on 

the result, when executing workflow application with small number of task (T20 and T40), the high number of 

resources used does not give any effect on the makespan; the makespan of the overall workflow will become 

stagnant. This will lead to other issues of idle and unused resource that causes increase of cost and waste of 

energy. In Simulation 2 there are two conditions. Condition 1 the resource experiencing permanent failure 

and in Condition 2 the resource has temporary failure (restart). The scalability of the proposed algorithm is 

compared by increasing the number of tasks (T60, T80 and T100). Based on the result as shown in Figure 3, the 

makespan for Condition 1 with permanent resource failure are higher. This is because for large number of 

tasks, the execution of tasks requires large number of resources. However, by increasing the number of 

resources it will lead to another problem, that is reliability. The high usage of resources will decrease the 

reliability of the workflow.  

13% 
30% 

0

30

60

90

120

Normal Scenario With Chekpointing
Method

Without
Chekpointing

Method

Ti
m

e 
(M

in
u

te
s)

 

Senario 

Makespan Comparison with Checkpointing 
Method 



                ISSN: 2302-9285 

Bulletin of Electr Eng and Inf, Vol. 8, No. 1, March 2019 :  283 – 290 

288 

In general, the result of the simulations can be concluded as follows. First, the performance of 

FAWS depends on the tasks dependencies in the workflow application. The main objective of FAWS 

algorithm is to identify which task has high number of dependencies. Based on examples, tasks with high 

dependencies need to be scheduled immediately. Therefore, FAWS algorithm depends with the new ranked 

list generated from the LWFS algorithm. With the new ranked list, the tasks will be scheduled to designated 

resources. Second, FAWS algorithm can be used to handle growing number of tasks, from small scale 

workflow for 10 tasks to large scale workflow of 100 tasks. The result shows the increase of makespan when 

handling large tasks is about 13% to 15%. The proposed method is scalable to handle large task size and it 

considerably reduces the failure probability at the expense of relatively minimal increase of the workflow 

applications makespans.  

 

 

 
 

Figure 3. Resource failure condition 1 (permanent) 
 

 

 
 

Figure 4. The percentage of makespans during resource failure 
 

 

 For the second of scenario, the result shown in Figure 5 and 6. The result shows trade-off between 

makespan and reliability of the workflow application. As a result, the makespan and the reliability cannot be 

minimized simultaneously. The FAWS outperformed both algorithms in terms of minimizing the makespan 

increase at the same time minimizing the reliability (Figure 5). From this graph, it shows the scalability of 

FAWS algorithm handles task assignment very efficiently with a minimal increase of the makespan when the 

number of task increases. It shows that for small number of tasks T20, T40 and T60, the increase of makespan 

is minimal about 8%. As the number of tasks increase T80 and T100, the graph shows the relative 
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percent increase in makespan. The result depicts that as the number of task increases, the makespan will also 

increase. The percentage of makespan gap between the task in conditions of failure and non-failure also 

increases as number of task increase. It can be seen that when the gap is smaller, it is workflow is more 

efficient and scalable. 

 

 

 
 

Figure 5. Resource failure condition 2 (restart) 

 

 

 The graph in Figure 6 shows the comparison of makespan of different workflows for both 

Condition 1 and Condition 2. The result were compared between normal condition of task execution without 

resource failure presence with the two conditions: permanent and non-permanent resource failure. Each data 

point represent the number of tasks. The performance of the FAWS algorithms shows variation with respect 

to the size of the workflow application. When the workflow has fewer tasks, the resources will have more 

idle time. Hence, the FAWS algorithm will examine and find the next available resources. From this graph 

(Figure 6), it shows the scalability of FAWS algorithm handles task assignment efficiently with a minimal 

increase of the makespan. 

 

 

 
 

Figure 6. Overall makespans during resource failure 

 

 

5. CONCLUSION 

This paper presented a scalable workflow scheduling algorithm for minimizing makespan and 

failure probability. The proposed Failure Aware Workflow Scheduling (FAWS) Algorithm handles 

unexpected failure causes rescheduling of the failed task on the incompleted task execution. To determine the 

impact on the the makespan in terms of increase of workflow tasks, few experiments were conducted. The 

algorithm discussed in this paper is for scheduling parallel applications on homogeneous systems solved two 
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conflicting objectives: maximize the reliability and minimize the makespan at the same time. The proposed 

algorithm handles unsuccessful job execution or resource failure by dynamically scheduling workflows to 

available resources. The FAWS algorithmis compared with the different scheduling algorithms with an 

increase of workflow tasks. Based on the experiment, specifically task rescheduling has a huge impact to the 

subsequent scheduling decisions for not-scheduled-yet task (child) in the workflow. For simulation analysis, 

task graphs were randomly generated and scheduled the parallel applications on homogeneous systems. The 

simulation results show that the proposed FAWS algorithm can significantly optimize the makespan and 

successfully map the workflow tasks to the resources accordingly. The proposed algorithm performs better 

than existing heuristic-based techniques for scheduling application workflows in terms of efficiency and 

scalability. One further direction of this research work in this thesis would be to extend the FAWS Algorithm 

to solve different conflicting QoS objectives such as Cost and Energy. The research will propose a solution 

that able to minimize the energy consumption at the same time lower the total cost to run a workflow 

application without sacrificing the system performance. 
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