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 This paper proposes a new full-reference algorithm, called Video Motion 

Quality (VMQ) that evaluates the relative motion quality of the distorted 
video generated from the reference video based on all the frames from both 

videos. VMQ uses any frame-based metric to compare frames from the 

original and distorted videos. It uses the time stamp for each frame to 

measure the intersection values. VMQ combines the comparison values with 
the intersection values in an aggregation function to produce the final result. 

To explore the efficiency of the VMQ, we used a set of raw, uncompressed 

videos to generate a new set of encoded videos. These encoded videos are 

then used to generate a new set of distorted videos which have the same 
video bit rate and frame size but with reduced frame rate. To evaluate the 

VMQ, we applied the VMQ by comparing the encoded videos with the 

distorted videos and recorded the results. The initial evaluation results 

showed compatible trends with most of subjective evaluation results. 
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1. INTRODUCTION  

Video creating, recording, and playing have been facilitated due to the capability improvement of 

mobile devices, digital cameras, and the development of their applications. For example, the 12Mega Pixels 

digital camera in the iPhone 7 Plus® captures high-resolution video up to 4K and it offers SLOw-MOtion 

(SLO-MO) in 1080p at 120 frames per second (fps) and 720p at 240 fps. In addition, Cisco® predicts that the 

online videos will account for more than 80% of all consumer internet traffic by 2020 [1]. Furthermore, over 

8 billion videos are watched on Facebook every day [2]. 

However, delivering videos to the end-user based on the required video format and desired Quality 

of Services (QoS) is still very expenses due to the limited or unpredictable network bandwidth, diversity of 

end-user devices, vast amount of data in digital videos, and variety of video formats. Video transcoding is 

required to allow critical end-users to watch any requested video at any time and from anywhere based on the 

required format and desired QoS [3]. Due to the limited bandwidth and congestion problems of some 

wireless network, reducing the video frame rate is highly applicable in video delivery systems. Dropping 

some frames from the reference video to generate a new distorted version reduces the video file size; and thus 

saves more bandwidth. However, dropping some frames affects the motion level of the distorted video and 

therefore reduces the motion quality of the perceived video. 

Satisfying the desired QoS requires transcoding the reference video in a way that keeps the motion 

level in an acceptable level and therefore optimizes video delivery process. Measuring the video motion 

quality of the distorted video requires a metric that compares frames from both videos in a way that smartly 

considers the reduction in the frame rate from both videos. 
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Frame rate represents the number of complete still images shown every second. The Human Visual 

System (HVS) is capable of differentiating between 10 and 12 of still images per second, after this frame 

rate, the HVS starts just seeing it as motion [3]. The motion looks jagged if the frame rate is too slow and 

blurred if the frame rate is too high. Choosing the right frame rate is an interesting human-factors and 

network bandwidth problem, but it is outside the scope of this paper. 

Naturally, motion representation in videos plays an important role in the perception of video quality 

[4]. Evaluating the video motion quality can be done either objectively or subjectively. Objective evaluation 

techniques are mathematical models that approximate expert judgments, these techniques are full-reference, 

reduced-reference, and no-reference [5]. Subjective evaluations, on the other hand, require expert judgments. 

Subjective studies are used to evaluate the performance of objective methods and algorithms. However, 

subjective studies are time consuming, difficult to implement, cumbersome, expensive, have to be undertaken 

manually, and impractical for most applications due to the human involvement in the evaluation process. 

Therefore, the objective methods are used to achieve the ultimate goal of matching the human perception [6]. 

Evaluating the performance of objective video quality models is usually done by calculating the correlation 

and error values between the model results and the results obtained with subject tests [7]. 

Full-Reference (FR) metrics are metrics that compute the video quality of the distorted video by 

comparing the original video signal against the distorted video signal, in which every pixel from the source is 

compared against the corresponding pixel at the distorted video. In FR metrics, both the original and distorted 

videos should be available [5]. Video quality in full-reference models is a measure of how a distorted video 

looks compared to the original. Existing FR Video Quality Assessment (VQA) algorithms do not fully use 

motion information from both videos to estimate the video motion quality of the distorted one. In addition, 

these algorithms fail to do adequate job in evaluating the motion quality level based on the reduction of frame 

rate between the reference and distorted videos.  

It is found that the Motion-based Video Integrity Evaluation (MOVIE) [4], Structural SIMilarity 

(SSIM) [8], Multi-Scale-Structural SIMilarity (MS-SSIM) [9] and Video Quality Model (VQM) [10] indexes 

tend to give the best performance [11]. The MOVIE requires high-computation and intensive operations that 

limit its effectiveness and applicability. In addition, to apply the MOVIE index, both videos should have the 

same frame rate. HVS is highly adapted for extracting structural information form scenes. SSIM [8] measures 

the quality of still images using a single-scale structural similarity paradigm, which provides a good 

approximation to perceived image quality. MS-SSIM [9] supplies more flexibility than SSIM method in 

incorporating the variations of image resolution and viewing conditions, and the experimental comparisons 

done in [9] demonstrate the effectiveness of MS-SSIM. 

 

 

2. RELATED WORK 

Yilin Wang et. al. [12] assumed that directly applying SSIM frame by frame is insufficient for VQA 

due to ignoring of the temporal information. Therefore the authors extended SSIM for Image Quality 

Assessment (IQA) by incorporating spatiotemporal information. However, their proposed method assumes 

that the reference and distorted videos have the same frame rate, which is not compatible with most of the 

real video delivery systems and applications. 

Kai Kang et. al. [13] showed an effective and efficient objective video quality metric based on the 

video content which focuses on using motion information in VQA compared to the previous work which 

develops the VQA that takes advantages of the various characteristics of HVS. On the whole, the proposed 

method mainly combines the motion information in temporal and structure information in spatial domain of 

video sequences. However, their proposed method assumes that both videos have the same frame rate and it 

does not consider the distortion in video frame rate.  

Phong V. Vu and Damon M. Chandler [14] proposed the Frame Distortion and Motion Dissimilarity 

(FDMD) algorithm as an approach to VQA which combines the frame-based distortion measurement with a 

spatiotemporal analysis of motion dissimilarity. The FDMD algorithm uses the Most Apparent Distortion 

(MAD) algorithm [15] to compute the frame-based distortion and develop a spatiotemporal model to capture 

motion dissimilarity through the STS images.  

Jos´e Joskowicz et. al. [16] presented a review of a set of parametric models published by ten 

different groups of authors. Each model is briefly described, and the relevant parametric formulas are 

presented. The performance of each model is evaluated and contrasted to some other models, using a 

common video clips set, in different coding and transmission scenarios. It just uses the values of the frame 

rates from both videos as parameters in the general parametric model. Our proposed model uses the content 

of each frame from both videos. 

Yen-Fu Ou et. al. [17] investigated the impact of temporal variation of the Frame Rate (FR) and the 

Quantization Step-Size (QS) on the perceptual video quality. Among all possible variation patterns, the study 
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focused on videos in which two FRs (or QS’s) alternate over a fixed interval, and explored the human 

responses to such variation by conducting subjective evaluation of test videos with different variation 

magnitudes and frequencies. Zhongkang Lu et.al. [18] developed a numerical model that measures the effect 

of delectability and annoyance of periodic frame dropping on perceptual visual quality evaluation under 

different content and frame size conditions.  

Yen-Fu Ou et. al. [19] attempted to understand how the perceived quality of a video varies as the 

frame rate changes and to explore the influence of video content and video resolution on the visual sensitivity 

to frame rate. Their proposed model does not use the frames content from both videos; it just uses the values 

of the frame rates from both videos as parameters. Our proposed model uses the content of each frame from 

both videos. Also, they assume that the reference video is artifact-free version, which is unreal assumption.  

 

 

3. PROPOSED ALGORITHM FOR VIDEO MOTION QUALITY 

In this paper, we propose a new full-reference algorithm, called Video Motion Quality (VMQ) that 

evaluates the relative motion quality of the distorted video generated from the reference video based on the 

frame rate information from both videos. VMQ uses any frame-based objective quality metric; here we used 

the MS-SSIM [9], for comparing frames from both videos. It finds the intersection value between each two 

frames from the reference and distorted videos. It calculates the intersection value based on the timestamp for 

each frame, after that it multiplies this intersection value with the result of the objective quality metric that is 

generated by comparing these frames together. Finally, it calculates the weighted average for all these 

comparisons. Algorithm 1 describes the VMQ metric in more details. Figure 1 shows an example that depicts 

how VMQ calculates the motion quality of the distorted based on two videos that have different frame rates. 

 

 

 
 

Figure 1. An example that shows how the VMQ works 

 

 

The VMQ compares two videos that have different frame rates. Algorithm 1 generates a value that 

represents the video motion quality of the distorted video. This value ranges from 0 to 1, the higher the value, 

the better the motion quality. VMQ uses frames from both videos to perform the comparison and generate the 

timestamp values. It then divides the summation of all the comparison values by the summation of all the 

intersection values as a weighted aggregation function to produce the final result as shown in (1). 

Each frame has a timestamp, which represents the time at which this frame will be displayed in the 

video. The intersection value represents the overlapping between two frames, from the original and the 

distorted videos, at a given time interval. Figure 1 shows an example of how VMQ extracts the timestamp 

differences; it shows two videos that are at different frame rates, vr is at 12 fps and vd is at 10 fps. vd is 

generated from vr by reducing the frame rate from 12 fps to 10 fps. Each video is represented as a sequence 

of boxes; each box represents a frame. Also, we numbered the boxes from frame1 to frame12. During the 

distortion process frame3 and frame10 were dropped from vr to generate vd. The dropping mechanism is an 

interesting issue related to the design of the video codec and how the transcoder works, but it is outside the 

scope of this paper. 

For example and based on Figure 1, given frame1 from vr with t0 timestamp, frame2 from vr with 

t1 timestamp, frame3 from vr with t2 timestamp, and so on. Also given frame′1 from vd with t′0 timestamp, 

frame′2 from vd with t′1 timestamp, frame′4 from vd with t′2 timestamp. The time stamp values from t0 to 

t12 represent the actual viewing time for vr from the begging to the end. In addition, the time stamp values 

from t′0 to t′10 represent the actual viewing time for vd from the begging to the end. We represent the time 

stamp differences for some of these frames from both videos using a, b, c, d, and e variables where a = t1 −
t′0, b = t′1 − t1, c = t2 − t′1, d = t′2 − t2, and e = t3 − t′2, and so on.   
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To calculate the video motion quality of vd generated from vr using VQM, frame1is compared with 

frame′1from vd using any frame-based metric, like MS-SSIM, and the result is multiplied by 𝑎, which 

represents the value of the time difference, then frame2 from vr is compared with frame′1 from vd and the 

result is multiplied by 𝑏, after that frame2 from vr is compared with frame′2 from vd and the result is 

multiplied by c and so on. Finally, the values of all these multiplications are added together and then divided 

by the summation of all the intersection values (i.e., the differences in timestamps). Here, we used the MS-

SSIM [9] as a frame-based metric to compare frames.  

Also, given a four-elements set, S = {framei, framej, interi,j, indexi,j} such that framei ∈  fr, 

framej ∈ fd, indexi,j represents the comparison value between framei and framejusing frame based metric, 

and interi,j represents the intersection value between framei and framejthat is generated from timestamp 

differences described above. The video motion quality value, vd. qualityVMQ,vr
, for the video vd generated 

from video vr and measured by VMQ is calculated based on all the comparisons and intersections values  

as follows: 

 

vd. qualityVMQ,vr
=

∑ (indexi,j∗interi,j)
|S|
i∈fr,j∈fd

∑ interi,j
|S|
i∈fr,j∈fd

        (1) 

 

VMQ uses a set of variables to store intermediate values that will be used later. Her, we will 

describe just the functions. The getValues(… ) function compares two frames (i.e., framei and framej) using 

the getIndex(… ) function. The getIndex(… ) function represents the real use of the frame based index, such 

as MS-SSIM. After comparing two frames from both videos, the getValues(… ) function multiplies the 

Algorithm 1 VideoMotionQuality(video 𝑣𝑟 , video 𝑣𝑑)   // the proposed algorithm 
Input: two videos, a reference video, 𝑣𝑟, and a distorted video, 𝑣𝑑. 

Output: a number between 0 and 1 that represents the motion quality of the distorted video. 

1: sizer ← 𝑛𝑢𝑚_𝑜𝑓_𝑓𝑟𝑎𝑚𝑒𝑠(𝑣𝑟); 
2: size𝑑 ← 𝑛𝑢𝑚_𝑜𝑓_𝑓𝑟𝑎𝑚𝑒𝑠(𝑣𝑑); 
3: size = min (sizer, sized); 

4: 𝐟𝐨𝐫 (i = 1 𝑡𝑜 𝑠𝑖𝑧𝑒)  𝐝𝐨 
5:       𝑜𝑡𝑐  = 𝑣𝑟. 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑖). 𝑔𝑒𝑡𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝();  // the timestamp value of the current frame in 𝑣𝑟 

6:       𝑜𝑡𝑛  = 𝑣𝑟 . 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑖 + 1). 𝑔𝑒𝑡𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝();// the timestamp value of the next frame in 𝑣𝑟 

7:       𝑡𝑡𝑐 = 𝑣𝑑 . 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑖). 𝑔𝑒𝑡𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝();𝑣𝑜 ();// the timestamp value of the current frame in 𝑣𝑑 

8:       if (𝑜𝑡𝑐 =  𝑡𝑡𝑐) 

9:             𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =  𝑜𝑡𝑛  − 𝑜𝑡𝑐; 
10:             𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒𝑠(𝑣𝑟. 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑖), 𝑣𝑑. 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑖), 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛); 
11:      else if (𝑡𝑡𝑐 > 𝑜𝑡𝑐) 

12:                   𝑡𝑡𝑝 = 𝑣𝑑 . 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑖 − 1). 𝑔𝑒𝑡𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝();// the timestamp value of the previous frame in 𝑣𝑑 

13:                  𝐟𝐨𝐫 (j = 1 𝑡𝑜 sizeo)  𝐝𝐨 

14:                        𝑜𝑡𝑐  = 𝑣𝑟. 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑗). 𝑔𝑒𝑡𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝();// the timestamp value of the current frame in 𝑣𝑟 

15:                        𝑜𝑡𝑛  = 𝑣𝑟 . 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑗 + 1). 𝑔𝑒𝑡𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝();// the timestamp value of the next frame in 𝑣𝑟 

16:                        if (𝑜𝑡𝑐 =  𝑡𝑡𝑐) 

17:                              𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =  𝑜𝑡𝑛  − 𝑜𝑡𝑐; 
18:                              𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒𝑠(𝑣𝑟. 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑗), 𝑣𝑑. 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑖), 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛); 
19:                        if ((𝑜𝑡𝑐 >  𝑡𝑡𝑝) 𝐴𝑁𝐷 (𝑜𝑡𝑐 <  𝑡𝑡𝑐) 𝐴𝑁𝐷 (𝑜𝑡𝑛 =  𝑡𝑡𝑐)) 

20:                              𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =  𝑡𝑡𝑐  − 𝑜𝑡𝑐; 
21:                              𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒𝑠(𝑣𝑟. 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑗), 𝑣𝑑. 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑖 − 1), 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛); 
22:                       else if ((𝑜𝑡𝑐 >  𝑡𝑡𝑝) 𝐴𝑁𝐷 (𝑜𝑡𝑐 <  𝑡𝑡𝑐) 𝐴𝑁𝐷 (𝑜𝑡𝑛 <  𝑡𝑡𝑐)) 

23:                              𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =  𝑜𝑡𝑛  − 𝑜𝑡𝑐; 
24:                              𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒𝑠(𝑣𝑟. 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑗), 𝑣𝑑. 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑖 − 1), 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛); 
25:                              else if ((𝑜𝑡𝑐 <  𝑡𝑡𝑐) 𝐴𝑁𝐷 (𝑜𝑡𝑛 >  𝑡𝑡𝑐)) 

26:                                      𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =  𝑡𝑡𝑐  − 𝑜𝑡𝑐; 
27:                                      𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒𝑠(𝑣𝑟. 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑗), 𝑣𝑑. 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑖 − 1), 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛); 
28:                                     end if 

29:                              end if 

30:                       end if 

31:                       end if 

32:                       if ((𝑜𝑡𝑐 <  𝑡𝑡𝑐) 𝐴𝑁𝐷 (𝑜𝑡𝑛 >  𝑡𝑡𝑐)) 

33:                              𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =  𝑜𝑡𝑛  − 𝑡𝑡𝑐; 
34:                              𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒𝑠(𝑣𝑜. 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑗), 𝑣𝑡 . 𝑔𝑒𝑡𝑓𝑟𝑎𝑚𝑒(𝑖), 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛); 
35:                       end if 
36:                 end for 

37:             end if 
38:       end if 

39: end for 

40: return 𝑖𝑛𝑑𝑒𝑥𝐴𝑙𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝐴𝑙𝑙 ;⁄  
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intersection value with the index value returned from the getIndex(… ) function and store the result in the 

weight variable. Then the getValues(… ) function updates the values of the indexAll and weightAll static 

variables. The indexAll static variable represents the summation of all the multiplications of index and 

intersection values together and the weightAll static variable represents the summation of all the intersection 

values. The VMQ returns the final value as a video motion quality result (i.e., line 40). 

VMQ uses the MS-SSIM [9] for the comparison. However, plugging in any frame based metric that 

compares two frames, such as Peak Signal-to-Noise Ratio (PSNR) [20] or SSIM [8], is applicable and 

considered as an important feature in the VMQ. 

 

 

4. MEASUREMENT METHODOLOGY 

4.1.  Video clips and encoding 

In this paper, a set of raw, uncompressed HDTV videos from the VCDL video data set [21] were 

used. For evaluation, we selected 13 raw videos in total based on varieties of video content, ranges of scene 

source material, and varieties of color and brightness components. These videos range widely from slow 

motion to high motion. Each video is a 10-second length with no audio content, 1080p progressive scan with 

Full HD 1920x1080 as a frame size. We encoded each raw video to generate new sets of encoded videos at 

30 frames per second (fps) as a frame rate, and at 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 Mbps as video bit rates 

using the H.264 video codec. From the raw videos, we generated 130 (13 original raw ∗ 10 different bit rates) 

different encoded videos. 

 

4.2. Generating distorted videos 

From each of encoded video, new sets of distorted videos were generated by reducing the frame rate 

without any temporal filtering. The reduction is from 30 fps to 27, 25, 23, 20, 17, and 15 fps. These sets 

includes 780 videos (130 encoded videos ∗ 6 different frame rates). To generate the distorted videos, we used 

Java® and Xuggler® for implementing the encoding and transcoding functionalities. Figure 2 shows an 

example of the general structure of the encoding and transcoding steps for each raw, uncompressed video to 

generate a distorted one, as we described above. 

 

4.3. Quality estimation 

In this step, we applied the VMQ algorithm by comparing each encoded video, at 30 fps, with its 

corresponding distorted video, at different frame rates specified above. Figure 3 shows the video quality 

evaluation for all selected videos, which is calculated using the VMQ by comparing the original and distorted 

videos. For example and to describe the comparison methodology based on Figure 2, we compared 

“src01_8Mbps” with “src01_8Mbps_17fps” using the VMQ algorithm.  

 

 

 
 

Figure 2. An example of the encoding and transcoding steps to generate the distorted videos for src01 video 
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Figure 3 shows that most of these videos have the same trend; there is a little improvement in the 

quality when the video bit rate is increased. However, for src08, there is a decreasing trend in video quality 

when the bit rate is increased at all the frame rate reductions. Also, for src02 and src07, there is a decreasing 

trend in video quality at the beginning when the reduction is from 30 to 20 fps as it shown in Figure 3(c). We 

believe that these videos have different trends because of the video content type and motion level. These two 

parameters must be considered in a future research. 
 

 

  
  

(a) 15 fps (b) 17 fps 

  
  

(c) 20 fps (d) 23 fps 

  
  

(e) 25 fps (f) 27 fps 

Figure 3. The video motion quality results for the VMQ using the MS-SSIM [9] metric 
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Figure 4 shows the video motion quality evaluation results for the six different frame rates (i.e., 

from 15 to 27 fps) combined together in one graph. It shows that the 27 fps curve achieves the highest quality 

while the 15 and 17 fps curves achieve the lowest video motion quality, which is compatible with general 

trends of most subjective evaluation results. 

 

 

 
 

Figure 4. The video motion quality evaluation results based on the VMQ algorithm for all the frame rates 

 

 

5. CONCLUSION  

This paper presents a full-reference algorithm, called Video Motion Quality (VMQ), to evaluate the 

motion quality of the distorted video by incorporating the frame rate information from both videos. VMQ 

extracts the timestamp from each frame from both videos and calculates the time differences and then finds 

the weighted average of comparing two frames from both video based on the time difference. In addition, 

VMQ incorporates a well-known quality metric for still images, called MS-SSIM [9] to compare frames from 

both videos. Initial experiments were done to validate the proposed algorithm. The results suggest that the 

proposed algorithm is able to give a good approximation that is generally compatible with evaluations from 

subjective tests without manual tuning. In addition, the MS-SSIM [9] metric is able to distinguish between 

quality levels for different frame rates and used to quantify the behavior of different video content on the 

motion quality. VMQ represents an initial step toward developing a more robust metric that considers more 

factors such as motion level and video content type. Also, to illustrate the effectiveness and efficiency of the 

VMQ, we are planning to perform comprehensive subjective tests. 
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