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1. INTRODUCTION
1.1. Memory resistor

The memristor, short for “memory resistor”, is the fourth fundamental passive circuit element; the
first three being the resistor, capacitor, and inductor. The idea of the memristor falls on one of the six
possible pairwise relationships among four fundamental circuit variables: current i, voltage v, charge g, and
flux linkage ®. Chua, in 1971, claimed that the q—® relationship is memristance, M [1-3] because, at the
time, it was the only pairwise relationship left that was not yet firmly understood. These pairwise
relationships are visualized in Figure 1 (left). Memristance, M, is simply resistance specifically for
memristors, and is measured in ohms, Q.

However, the actual memristor was only found in 2008 by HP Labs in their research for a suitable
switch in their crossbar array [4, 5]. Their discovered memristor is made up of two layers of titanium dioxide,
TiO2, where one layer is doped with oxygen vacancies, denoted as TiO2-x. The length of the doped layer is
labelled w, whereas the length of the memiristor is labelled D, where D is typically 10 nm. The structure of
the memristor is shown in Figure 1 (right).

The memiristor, as the name suggests, is a resistor with memory. Once the voltage across it is
removed, the memristance at that time instance is retained. Also, the memristance increases over time until
the maximum memristance, MOFF when connected at one polarity; and until the minimum memristance,
MON at reverse polarity. The applied signal causes the oxygen vacancies in TiO2-x to move, whose direction
depends on the polarity. Consequently, w changes and causes M to change as well. When the signal is
removed, w is unchanged, and hence, M is retained [1-8]. The current-voltage i-v plot of the memristor
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exhibits a pinched hysteresis loop when a sine signal is applied, as shown in Figure 2. The loop area shrinks
with increasing frequency, and eventually reduces into a line as the frequency approaches infinity [1-8].
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Figure 1. Pairwise relationship of the four circuit variables (left) and structure of HP
memristor (right)
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Figure 2. I-V plot of the memristor

The memristor is incorporated in PUF designs because of its memory-like properties and ability to
change its memresistance which creates additional variation. Also, the memristor manufacturing technology
is said to be relatively compatible with the modern CMQOS fabrication standards [9]. In addition, the
memristor-based PUFs have been conjectured to be more resistant to model building attacks than purely
CMOS-based PUFs, because memristors are bidirectional devices as compared to the unidirectional
MOSFET [10]. The memristor, roughly tens of nanometers long, is much smaller than most CMOS
components and thus, reduces the area of the PUF. Hence, besides the APUF, other research efforts have
been made to incorporate the memristor into different types of PUFs to enhance its performance [9-15].

1.2. Memristor based arbiter PUF

The Physically Unclonable Function (PUF) was introduced for hardware security purposes [16-18].
The name PUF suggests that it is a physical circuit, which cannot be perfectly duplicated, that uniquely maps
inputs to outputs. The input and output are termed as “challenge” and “response”, respectively. One mapping
of a challenge to a response is termed as “challenge-response pair” (CRP). The PUF exploits manufacturing
variations to have CRPs that are unpredictable (but repeatable), which are like unique “fingerprints”. This
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unique “fingerprint” is inherent in the PUF circuitry and needs not be stored in memory. Hence, the PUF is
used as an alternative to storing keys in nonvolatile memory in security applications like the identification
and authentication of a device [19-21].

One PUF example is the memristor-based arbiter PUF (APUF), which was initially introduced by
Mathew et al. [22] in Figure 3 (left). The advantage of this APUF over the traditional APUF is its challenge-
dependent path delays which makes modelling by machine learning algorithms like SVM and LR infeasible
[22]. The traditional APUF showed vulnerability such attacks up to 99% prediction accuracy [23-25].

Although the circuit design by Mathew et al. is resistant to attacks by machine learning algorithms,
it was found to be susceptible to attacks by cryptanalysis, which was pointed out and circumvented by
Chatterjee et al. by changing the transistor connection in the delay paths [26], as shown in Figure 3. Thus, the
newer design has all its memristors affected in the challenge application stage, unlike the previous design
where, depending on the challenge, only a subset of the memristors are affected.

Visr Reset control voltage
Vce Challenge Enable voltage

........

Figure 3. Memristor-based APUF by mathew et al. [22] (left) and by chatterjee et al. [26] (right)

Teo et al. made two modifications on the circuit design, which are adding arbiters to increase the
number of response bits and replacing the D flip-flop with a SR NAND latch as the arbiter [27], as shown in
Figure 4. The first modification is done because the SR NAND latch, compared to the D flip-flop has better
input-to-output path symmetry, which reduces bias in the response generation. Also, the SR NAND latch is a
simpler and smaller circuit component than the D flip-flop. As for the second modification, adding more
response bits makes computing the response of the APUF more difficult, or at the very least, more time-
consuming. Increasing the number of response bits from 1 to n results in the increase of the number of
possible responses from 2 to 2n.

Vpuise — — — el — | S 9
i i i air MC aiC
ci [ o] C3 C4 Cin-1) Cn
H;Ih'bl 0 — — — +hEn )
11 1sC |12 11 21iC i
ci c2 c3 c4 Cin-1) Cn

- Q-r = Q-rz b -1 Qrim-1) = Q- Im
—rR @ LR @b —r @ LR @

Figure 4. Memristor-based APUF by Teo et al. [27]

The operation of the memristor-based APUF can be briefly described in four stages [22, 26-27].

a. Reset: A reset signal, VRST, is set to 1. VRST is applied across all memristors to cause each memristor
to be in its random initial memristance, which is dependent on the variations inherited in the
manufacturing process.

b.  Challenge application: VRST is set to 0. A pulse signal, VPULSE, and the challenge voltages are set to
1. Each memristor’s memristance is altered in such a way that it is dependent on the applied challenge.
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Also, a control signal, VCTRL, is set to 1 to prevent the voltage at the input of the arbiters to rise and
generate a false response bit.

c.  Signal propagation: After a sufficient period, VCTRL is set to 0 to allow VPULSE to propagate to
the arbiters.

d. Response generation: Depending on which of the two delay paths does the signal propagate faster, the
output of the arbiter either maintains at 1 or toggles to 0, which is taken as the PUF response.

Based on the previous memristor-based APUF designs, further modifications can be made on the
memristor-based APUF. Therefore, in this paper, circuit configurations are proposed as a means for increased
variation and thereby, improve its performance in terms of uniqueness, uniformity, and bit-aliasing as well as
resistance to SVM.

2. RESEARCH METHOD
2.1. Memristor-based APUF configurations

Configurations on the circuit of the memristor-based APUF are proposed simply to increase
variation, thereby improve uniqueness and increase difficulty in duplication. The circuit designer may set the
circuit of the memristor-based APUF to any desired, or even random, configuration so that it will be even
more difficult for an adversary to duplicate the APUF without discovering the actual configuration. Take for
example two APUFs that are both designed to be m-bit challenge and n-bit response. However, one of the
APUFs may have more memristors per transistor, which has longer path delays than the other. Thus, both
APUFs are more distinct from one another, besides already having variations due to the manufacturing
process variations. In this paper, two configurations were made on the memristor-based APUF from two
variables, which are number of memristors per transistor, and number of challenge and response bits.

The first configuration is varying the number of memristors per transistor. In other words, additional
memristors are included in series between the source and drain terminals of each transistor. The memristor-
based APUF was simulated from one to five memristors per transistor, where five memristors per transistor is
shown in Figure 5. Each memristor added is subjected to manufacturing variations and thus, uniqueness can
be improved.

As for the second configuration, the number of challenge bits is varied at 8, 16, and 32 bits, whereas
the number of response bits is varied at 4 and 8 bits. Thus, there are a total of six possible combinations of
challenge bits to response bits. The placement of the arbiters is spread out evenly along the delay paths. The
position of the arbiters can be determined by simply dividing the number of challenge bits by the number of
response bits. As an example, for 32 challenge bits and 4 response bits, the arbiters are placed on the delay
paths after every eight transistors, as shown in Figure 6. For simulations in configuration 2, the number of
memristor per transistor was fixed at one.
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Figure 5. Example of configuration 1: 5 memristor per transistor
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Figure 6. Example of configuration 2: 32-bit challenge, 4-bit response
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2.2. Simulation setup

The circuit simulations were performed using SilTerra’s 180nm at 1.8V and 130nm at 1.2V to
observe any effect on the APUF performance. The memristor-based APUF circuit is based on Teo et al. [27].
The memristor SPICE circuit used is by Biolek et al. [28] with parameters shown in Table 1. The initial
memresistance, MINIT, and the length of the memristor, D, were chosen as sources of manufacturing
variation, set at 20% Monte Carlo variation of 5000 runs, similar to that performed in [22, 26, 27].

Table 1. Memristor simulation parameters

Memristor parameter Value
Resistance at ON state Mon 100 kQ
Resistance at OFF state More 16 kQ
Initial resistance Mt 11kQ (£20%)
Length of memristor D 10nm (£20%)
Migration coefficient U 10fm%(V-s)
Boundary control parameter  p 10

2.3. PUF performance metrics

The performance of the proposed memristor-based APUF is evaluated on uniqueness, uniformity,
and bit-aliasing, which are metrics that have been derived by Maiti et al. [29]. The metrics were computed in
MATLAB, where the following parameters are used.
a.  X: number of PUF circuits tested
b.  n: number of response bits
¢. HD (Ri,Rj): Hamming distance of responses, Ri and Rj (where i and j are indexes)

Uniqueness estimates the ability of a PUF type to uniquely distinguish one circuit from another.
Uniqueness is calculated by averaging all Hamming distances of all possible pairs of responses for the same
applied challenge. The equation for uniqueness is shown in (1). The ideal value is 50% [29].

1 wx_1wox HD(Ri,Rj)

Uniqueness=m i=1 Aj=i+1
2

x 100% (1)

n

Uniformity measures the proportion of 0s and 1s of a PUF response, which indicates the presence of
bias within the response. For the same applied challenge, let ri, j be the jth bit of the ith n-bit response (Ri),
then the equation for calculating uniformity of the ith PUF circuit is given by (2). The ideal value is 50% to
show a balanced proportion of Os and 1s for one response [29].

Uniformity = %Z}Ll 7 X 100% 2

Bit-aliasing measures the proportion of 0s and 1s for one bit-position of the responses. By letting ri,
j be the jth bit of the ith n-bit response (Ri), the equation for calculating the bit-aliasing at the jth bit position
is given by (2). The ideal value is 50% to show a balanced proportion of 0s and 1s for one bit position [29].

Bit — aliasing = %zg‘zlri,j X 100% ©)

2.4. Support Vector Machine (SVM)

Support vector machine (SVM), one of the widely used machine learning algorithms, is generally
used to classify data. In the context of this research, SVM attempts to model the behavior of the memristor-
based APUF. The SVM trains on a given subset of the CRPs, and then runs tests by predicting the rest of the
CRPs. A good PUF should be able to resist being accurately predicted by any modeling attacks, and thus the
desired outcome is 50% prediction accuracy, indicating that the SVM appears to be randomly guessing
between 0 and 1, which is a sign that it cannot model the APUF. The training and testing of the CRPs were
performed using the LIBSVM package [30]. The training set size was 50% of the CRP set, which were
chosen at random and then, the rest of the CRP set is used for testing.

Bulletin of Electr Eng and Inf, Vol. 8, No. 1, March 2019 : 74 — 82



Bulletin of Electr Eng and Inf ISSN: 2302-9285 a 79

3. RESULTS AND ANALYSIS
3.1. Performance metrics
The simulation results of the memristor-based APUF for Configuration 1 on 180nm at 1.8V and
130nm at 1.2V are shown in Tables 2 and 3., respectively.
Table 2. Simulation results for configuration 1 on 180nm at 1.8V

No. of memristor Performance metric (%)
per transistor Uniqueness Uniformity Bit-aliasing
1 49.998 49.940 49.938
2 50.008 49.795 49.900
3 49.995 50.310 50.344
4 46.886 50.335 50.388
5 50.011 49.905 50.088

Table 3. Simulation results for configuration 1 on 130nm at 1.2V

No. of memristor Performance metric (%)
per transistor Uniqueness Uniformity Bit-aliasing
1 49.991 50.650 50.663
2 49.834 47.251 47.263
3 49.619 46.302 46.313
4 49.945 50.512 50.513
5 49.215 54.560 54.763

For both circuit simulators, the performance of the memristor-based APUF have shown
improvement, that is the values of the performance metrics are much closer to 50% as compared to the results
of other memristor-based APUFs in [26, 27]. Comparing between the results from both circuit simulators,
180 nm at 1.8 V presents a more favorable result. The discrepancy may be due to the difference in the CMOS
technology used. Nevertheless, the results when the 130 nm at 1.2 V is used are still acceptable, which is
within the £5% range from the ideal 50%.

The simulation results for the configuration 2, which is varying the number of challenge and
response bits are shown in Tables 4 and 5., for 180 nm at 1.8 V and 130 nm at 1.2V, respectively. The
memristor-based APUF shows excellent performance regardless of the combination of the number of
challenge bits or response bits used, especially for the simulation set using 180 nm at 1.8 V. However, there
is a slight discrepancy for the case of 32 challenge bits and 4 response bits when using 130 nm at 1.2 V.
Nevertheless, for the rest of the combinations, the results are still satisfactory.

Table 4. Simulation results for configuration 2 on 180nm at 1.8V
Performance metric (%)

No. of challenge bits 4 response bits 8 response bits
Uniqueness  Uniformity  Bit-aliasing  Uniqueness  Uniformity  Bit-aliasing
8 49.998 49.940 49.938 49.987 49.902 49.894
16 50.008 49.960 49.963 50.006 49.795 49.800
32 49.990 49.575 49.631 49.995 49.790 49.809

Table 5. Simulation results for configuration 2 on 120nm at 1.2V
Performance metric (%)

No. of challenge bits 4 response bits 8 response bits
Unigueness  Uniformity  Bit-aliasing  Uniqueness  Uniformity  Bit-aliasing
8 49.991 50.650 50.663 49.719 47.376 47.375
16 49.338 44.903 44.875 49.695 47.889 47.881
32 42.460 66.692 66.700 48.775 56.833 56.838

The proposed configurations of the memristor-based APUF show favorable results in terms of the
performance metric values, especially in the case of uniqueness for almost all configurations. These results
show that the memristor-based APUF is more unique, or in simple terms, the PUF responses are not alike and
predictable, and appear random. With that said, it is harder to observe a pattern or repeatability in the
response bits to predict the response. Furthermore, the results are consistent regardless of the configuration
used. Therefore, the memristor-based APUF maintains its resistance to possible attacks.

With configurations, the circuit designer has the freedom to set the memristor-based APUF into any
desired, or even random, configuration, since there is no fixed rule on the configurations. It can be designed
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in such a way that both types of configurations discussed are applied. Therefore, it is more difficult for an
adversary to duplicate a particular APUF without discovering the actual circuit design. In short, the
memristor-based APUF, besides having improved performance in terms of uniqueness, uniformity, and bit-
aliasing, also has better reliability in the sense that the performance is unchanged with changing
configurations.

3.2. SVM prediction accuracy

Tables 6 and 7 shows the accuracy of the SVM on configurations 1 and 2, respectively. The
expected result is 50%, which is the probability of obtaining one out of two equally possible outcomes, like a
fair coin toss. The results in Tables 6 and 7 shows very close to desired values for even a large training set.
Therefore, the results indicate that the proposed configurations on the memristor-based APUF have strong
resistance against attacks by SVM, which is one of the widely used machine learning algorithms.

Table 6. SVM prediction accuracy for configuration 1
No. of memristor per transistor SVM prediction accuracy (%)
49.940

42.188

50.672

49.609

49.024

O WN -

Table 7. SVM prediction accuracy for configuration 2
SVM prediction accuracy (%)

No. of challenge bits

4 response bits 8 response bhits
8 51.913 52.344
16 50.586 48.731
32 49.024 48.731

4. CONCLUSION

In this paper, configurations on the memristor-based APUF are proposed to increase variations and
thereby further improving the PUF performance in terms of uniqueness, uniformity, and bit-aliasing; as well
as resistance to attacks by SVM. Also, it is to make it more difficult or time-consuming for an adversary to
duplicate the circuit design. The configurations made are 1) varying the number of memristor per transistor,
and 2) varying the number of challenge and response bits. The results show excellent performance as well as
strong resistance against attacks by SVM. In addition, the results are consistent among configurations. The
memristor-based APUF shows excellent simulation results for all configurations for both CMOS
technologies. In conclusion, configurations can be used in the implementation of the memristor-based APUF
as a device for hardware security.

Future research efforts will be focused on additional tests such as randomness using NIST test suite
as well as using other machine learning algorithms like linear regression or artificial neural network.
Eventually, the actual hardware implementation will be done.
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