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 The estimation of the electrical model parameters of solar PV, such as  

light-induced current, diode dark saturation current, thermal voltage, series 

resistance, and shunt resistance, is indispensable to predict the actual 

electrical performance of solar photovoltaic (PV) under changing 

environmental conditions. Therefore, this paper first considers the various 

methods of parameter estimation of solar PV to highlight their shortfalls. 

Thereafter, a new parameter estimation method, based on multi-objective 

optimisation, namely, Non-dominated Sorting Genetic Algorithm-II  

(NSGA-II), is proposed. Furthermore, to check the effectiveness and 

accuracy of the proposed method, conventional methods, such as,  

‘Newton-Raphson’, ‘Particle Swarm Optimisation, Search Algorithm, was 

tested on four solar PV modules of polycrystalline and monocrystalline 

materials. Finally, a solar PV module photowatt PWP201 has been 

considered and compared with six different state of art methods. The 

estimated performance indices such as current absolute error matrics, 

absolute relative power error, mean absolute error, and P-V characteristics 

curve were compared. The results depict the close proximity of the 

characteristic curve obtained with the proposed NSGA-II method to the 

curve obtained by the manufacturer’s datasheet. 
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1. INTRODUCTION  

Among all the available inexhaustible energy sources, solar PV systems have received utmost 

attention throughout the world because of their abundance, lack of pollution, zero noise, and less 

maintenance characteristics and their wide acceptance in integration with modern power grids [1]. Though, 

solar energy is being considered as the most accessible renewable energy resources with huge potential of 

electricity generation, unfortunately, it is often characterized by low power density, low conversion 

efficiency and high installation costs [2]. Therefore, there is need to explore the research in the area that 

could be supportive in enhancement of optimal capturing capacity of available solar energy. Over the years, 

myriad of works have been carried out to ensure improved performance of the solar PV. Among all of the 

existing research areas the parameter estimations and modeling of solar PV have received utmost attentions 

by the researchers.  

The accurate estimation of electrical model parameters, such as, light-induced current (IPh), diode 

dark saturation current (Io), thermal voltage (VT), series resistance (Rs), and shunt resistance (Rp), of solar PV 

is necessary for accomplishing the following motives: 

a. To improve the overall efficiency of PV systems [3].  

b. To predict expected power output in varying environmental condition [4].  
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c. To obtain accurate design specification of the power conditioning equipment connected with the solar 

PV, and [5]. 

d. To simulate maximum power tracking algorithm, precisely.  

Generally, existing methods were divided into three categories in the research, such as: Analytical 

methods, Numerical methods, and Metaheuristics methods. 

Usually, the manufacturer provides the remarkable points, such as, ‘voltage at the maximum power point 

(VMP)’, ‘current at the maximum power point (IMP)’, ‘short-circuit current (ISC), and ‘open-circuit voltage 

(VOC)’ in their data sheet [6]. The accuracy of parameter estimation through analytical methods relies heavily 

on the accurate emplacement of these remarkable points or known parameters on solar PV output 

characteristics [3, 7]. 

Among the various existing numerical methods, Newton-Raphson (NR) method [8], Lambert W 

function [9], and Gauss-Seidel (GS) method [10], were frequently considered in estimation of accurate 

electrical parameters of solar PV. Though these numerical methods have a higher level of accuracy than the 

analytical methods, these methods suffer from extensive computation time for the convergence also they 

converge to local maxima instead of global in case of wrong selection of initial values especially in NR and 

GS methods [8, 11].  

Although Metaheuristics Algorithms based approaches play a vital role in the extraction of electrical 

model parameters of solar PV, unfortunately, the speed of convergence is found to be low in genetic 

algorithm (GA) [3]. Also, the GA based approach is found to be unsuitable for highly interactive fitness 

function [3]. The swap between the initial temperature and cooling schedule is a major issue in simulating 

annealing (SA) [12]. Though particle swarm optimization (PSO) outperforms SA and GA [13], at the same 

time it is found inept to track accurate characteristics as provided in manufacturer’s datasheet. Also, the 

uniformity of estimated electrical model parameter cannot be assured through PSO [3, 13-15].  

Besides the shortfalls as discussed above, most of the aforementioned methods consider the task of 

parameter estimations as a single objective optimisation i.e., the error between the real and estimated or 

predicted current at a known voltage is considered as the objective function. Indeed, parameter estimation of 

solar PV is a multi-objective optimisation (MOO) task, wherein, accurate values of all five parameters, such 

as IPh, Io, VT, Rs, and Rp are highly desirable to achieve characteristics exactly in tune with the real 

characteristics of solar PV. Unfortunately, in most of the research works, all of these five unknown 

parameters were not considered to reduce computational complexities.  

Therefore, to rectify the inconsistencies prevailing in these methods, the present study proposes an 

accurate method of parameters extraction based on MOO [16], to accurately describe the solar PV output 

characteristics.  

 

 

2. THE SOLAR PV CELL MODEL 

The single diode model or Rp-model of solar PV is shown in Figure 1 which has been used in the 

present work to investigate the performance of solar PV. Although, there are two and three diode models of 

solar PV but these models have simultaneously increased the computational complexity due to a large 

number of unknown parameters. Also, a significant trade-off between accuracy and computational simplicity 

is achieved in Rp-model [11].  

 

 

 
 

Figure 1. Single-diode solar PV model 

 

 

The characteristic equation of Rp-model, as given in (1), provides the relation between the output 

voltage (V) and current (I) in terms of unknown parameters. 

           

 

(1) exp 1s s
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Where, VT=(αKTNs)/e is in terms of diode ideality factor (α), electron charge (e), Boltzmann’s constant (K), 

number of solar PV cell in series (Ns), and temperature (T). 

 

 

3. PROPOSED OBJECTIVE FUNCTION 

The output characteristic of a PV cell relies on five parameters, namely, IPh, Io, VT, Rs, and Rp, as 

given in (1). To estimate these unknown parameters, five equations, as given in (2), (3), (4), (6), and (8), can 

be derived from (1) as [17]:
 

a. Under short circuit condition, i.e., when V=0, I=ISC, the relation, as given in (1), can be written as:  

 

 

(2) 

 

b. Under open circuit condition, i.e., when I=0, V=VOC, the relation as given in (1), can be derived as:  

 

 

(3) 

 

c. At maximum power point (MPP), i.e., when I=IMP, V=VMP, the relation, as given in (1), can be written 

as: 

 

 

(4) 

 

d. The slope at MPP on P-V curve will be parallel to the voltage axis and hence it is found that 

 

 

(5) 

 

On solving (5) the forth equation can be derived as:  
 

 

(6) 

 

e. The final equation is derived by calculating the slope of the I-V characteristic curve. The slope of the  

I-V characteristic curve is derived by differentiating the output current with respect to the output voltage 

under short circuit condition. 
 

 

(7) 

 

On solving (7) the fifth equation can be derived as: 
 

 

(8) 

 

The (2), (3), (4), (6), and (8), have been combined to define objective function, f(x), as:  
 

 
(9) 

 

Now, the MOO problem is formulated as: 
 

 
(10) 
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Here, x is the array of decision variables {x1, x2, x3, x4, x5}. In the proposed work x1, x2, x3, x4, and x5 

represents IPh, Io, Rs, Rp and VT, respectively. 

 

3.1. Proposed parameter estimation method 

Various MOO methods generated from GA, such as the Vector-Evaluated Genetic Algorithm, 

Strength Pareto Metaheuristics Algorithm, Pareto Archived Evolution Strategy, classical non-dominated 

sorting-based multi-objective evolutionary algorithm, and NSGA-II, were tested and verified. Among these 

Methods, NSGA-II is considered to be one of the best methods due to its lower computation time and  

non-elitism approach. Therefore the present work considers NSGA-II, to evaluate the electrical model 

parameters of solar PV [16]. The following steps have been used in the proposed NSGA-II: 

a. Initialisation: objective function f (x), as given in (9), main population D, and the input variable and their 

ranges are initialized.  

b. Non-Domination Sort: NSGA-II uses non-domination sort to sort the initialized main population D. Each 

individual p in the main population D has two sets. The set Sp contains the individuals which are 

dominated by p whereas set np contains those individuals which are dominated to p. If the individual p 

has zero individuals in its set np, then p is assigned to front one (F1) and ranked one. 

c.  Crowding Distance: As the fitness value or rank is achieved, the next step is to assign the crowding 

distance Fi(dj), where Fi is the i
th

 front counter and dj is the crowding distance of the j
th

 individual in 

front Fi. The crowding distance is the distance between two individuals. 

d. Tournament Selection: The selection of the individual is dependent on its individual rank and crowding 

distance. The rank of the individual has been checked and the individual with the smallest rank is 

selected. In case of similar rank of two individuals, the crowding distance is considered for the selection. 

In this case, the individual with larger values of crowding distance, i.e., Fi(dj) , is selected. 

e. Genetic Operators: Offspring population is created using the genetic operator’s binary crossover  

and mutation.  

f. Recombination: The parent population is united with the offspring population and sorted again using 

non-domination sorting. The unfit individuals are replaced by the fit one and the original size of the 

population is maintained. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Estimation of performance indices for polycrystalline and monocrystalline PV modules 

Three polycrystalline and monocrystalline PV module with specifications as given in Tong NT et al 

[18] were considered. For proposed method and PSO, similar lower and upper bound values were taken, 

while for the NR method, different initial values were used. The electrical model parameters value for the PV 

modules found by the proposed method, NR, PSO, and search algorithm is summarised in Table 1.  

Figure 2-5 shows the P-V characteristic of the PV modules. It is evident that the P-V curve obtained by the 

proposed method for both type of PV cell modules were closest to the MPP. Also, it was observed that NR 

was the second best among the other methods but the accuracy of NR method is very much subjected to the 

selection of initial values which is evident from Table 1. Table 2 summarises the ARPE calculated for PV 

modules. The ARPE for all the PV modules using the proposed method were calculated to be very less. Thus, 

from the analysis of all the results it is evident that proposed method outperforms NR, PSO, and search 

algorithm in the case of polycrystalline as well as monocrystalline PV modules. 
 

 

  
  

Figure 2. P-V characteristics for WW energy,  

AS240-6P30 module 

Figure 3. P-V characteristics for Solarworld, Pro. 

SW255 module 
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Figure 4. P-V characteristics for Nemy, JP270M60 

module 

Figure 5. P-V characteristics for Solarworld, Plus 

SW280 module 
 
 

Table 1. Extracted parameters for polycrystalline and monocrystalline PV modules by the proposed and 

existing methods 

PV modules 
ParameterE

xtracted 

Search 
algorithm 

[18] 

NR 
Lower 

Bound 

Upper 
Boun

d 

PSO 
Proposed 

method 
Initial 

value 

Estimated 

value 

Polycrystalline         

WW Energy 

AS240-6P30 

IPh (A) 8.5705 8.5 8.5707 8 8.6 8.5568 8.5108 

Io (A) 0.0074E-6 1E-8 6.83E-9 7E-10 1E-7 3.488E-8 1E-8 

Rs (Ω) 5.79E-3 0.3 0.3490 0.1 0.5 0.3450 0.343 
Rp (Ω) 94.87 2000 4175.46 50 5000 2047.8 3500.6 

VT α=1.1725 1.6 1.7997 0.1 2 1.9489 1.8509 
         

Solarworld, 

Pro. SW255 

IPh (A) 8.8805 8 8.8807 8 9 8.8565 8.8814 

Io (A) 0.026E-6 1E-6 2.317E-8 10E-10 1E-6 2.311E-8 0.1E-7 

Rs (Ω) 3.457E-3 0.1 0.21 0.1 0.5 0.2093 0.2277 
Rp (Ω) 57.40 2000 2570.3 50 5000 2579.5 3735.8 

VT α=1.2554 1 1.9228 0.1 2 1.9237 1.8422 

Monocrystalline        

Solarworld, Plus 

SW280 

IPh (A) 9.7109 9.7 9.7112 9 10 9.6748 9.6945 

Io (A) 0.019E-6 1E-8 1.735E-8 1E-10 1E-7 1.844E-8 0.9E-8 

Rs (Ω) 5.357E-3 0.2 0.3235 0 0.5 0.3447 0.3371 
Rp (Ω) 61.07 2000 2714.3 50 1000 2591.2 3563.3 

VT α=1.2793 1.8 1.9612 0.1 2 1.9746 1.8991 
         

Nemy, 
JP270M60 

 

IPh (A) 9.2002 9 9.2003 9 10 9.3243 9.2035 

Io (A) 0.001E-6 1E-9 1.197E-9 1E-10 1E-7 1.069E-9 1E-9 
Rs (Ω) 5.01E-3 0.3 0.3015 0.1 0.5 0.2981 0.3061 

Rp (Ω) 207.73 9000 9120.8 1000 10000 9393.7 9838.8 

VT α=1.1027 1.6 1.6958 0.1 2 1.6826 1.6827 

 
 

Table 2. Absolute relative power error for polycrystalline modules 

PV module 
Extraction 
methods 

Actual Maximum 
Power Pactual (W) 

Calculated 

maximum power 

Pcal (W) 

Absolute Relative Power Error 

 ARPE 100(%)actual cal

actual

P P

P


 

 

WW Energy 
AS240-6P30 

NR 240.097 239.8 1.2370×10-1 

PSO 240.097 235.64 0.0185×102 
Search algorithm 240.097 243.3 0.0133×102 

Proposed Method 240.097 240.15 2.2074×10-2 

     

Solarworld, Pro. 

SW255 

NR 257.088 256.76 1.2758×10-1 

PSO 257.088 256.280 3.1428×10-1 

Search algorithm 257.088 250.68 0.0249×102 

Proposed Method 257.088 257.15 2.4116×10-2 

     

Solarworld, Plus 

SW280 

NR 282.984 282.99 2.1202×10-3 

PSO 282.984 281.24 6.1628×10-1 

Search Algorithm 282.984 282.52 1.6396×10-1 

Proposed Method 282.984 282.980 1.4135×10-3 
     

Nemy, JP270M60 

NR 269.948 269.793 5.7418×10-2 

PSO 269.948 272.94 0.0110×102 
Search Algorithm 269.948 277.8 0.029×102 

Proposed Method 269.948 269.913 1.2965×10-2 
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4.2. Estimation of performance indices for photowatt PWP201 module 

The unknown parameters of Photowatt PWP201 comprising of 36 polycrystalline silicon series 

connected cells at T=45˚C [18], is calculated with the proposed method (NSGA-II), NR, GA, PS, SA, 

(MPCOA), and (GOFPANM) are outlined in Table 3. Figure 6 shows the P-V curve of the PV module. The 

P-V curve obtained by the proposed method is close to the experimental data, in particular at the MPP point. 

Further, the values of MPP and ARPE, as estimated with these existing and the proposed method, have been 

summarised in Table 4. The ARPE is smaller for the proposed method. Table 5 shows the IAE matrics for 

each experimentally measured I-V points. The MAE calculated for the proposed method is 0.1875%, which 

is the lowest followed by the MAE calculated by the MPCOA and GOFPANM methods.  

The convergence process of the proposed method is shown in Figure 7. The proposed method is 

incomplex and does not have parameters that need to be tuned as in the case of PSO, SA, PS, MPCOA, and 

GOFPANM methods. 

 

 

Table 3. Photowatt PWP201 module parameters extracted by the proposed method and compared with 

various methods 
Parameters 

Extracted 
SA [12] NR [8] PS [19] GA [20] MPCOA [21] 

GOFPANM 

[22] 

Proposed 

method 

IPh(A) 1.0331 1.0318 1.0313 1.0441 1.03188 1.0305143 1.0301 
Io(µA) 3.6642 3.2875 3.1756 3.436 3.3737 3.4822631 0.79851 

Rs(Ω) 1.1989 1.2057 1.2053 1.1968 1.20295 1.2012710 1.4944 
Rp(Ω) 8333.333 555.56 714.29 555.556 849.693 981.98232 785.1624 

Nsα 48.8211 48.45 48.289 48.5862 48.5065 48.6428351 
43.583919 

(VT=1.1949) 

 

 

 
 

Figure 6. The P-V curve of the reference module Photowatt PWP201 by the proposed method and eight other 

existing method 

 

 

 
 

Figure 7. The convergence curve of Photowatt PWP201 by the proposed method (f(x)=0.0373 at 50 

generation and 5000 population) 
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Table 4. Absolute relative power error for Photowatt PWP201 module 
Methods *Pactual **Pcal ARPE 

SA 11.5403 11.6958 0.01347×102 

NR 11.5403 11.4441 8.60462×10-1 
PS 11.5403 11.5025 3.27547×10-1 

GA 11.5403 11.5752 3.02418×10-1 

MPCOA 11.5403 11.5293 9.53181×10-2 
GOFPANM 11.5403 11.5374 2.51293×10-2 

Proposed 

method 
11.5403 11.5375 2.42628×10-2 

*Actual Maximum Power, Pactual (W) 
**Calculated maximum power, Pcal (W) 

 

 

Table 5. The error matrics measurement by the proposed method and other existing methods for Photowatt 

PWP201 module 

Measured value 
Calculate

d I(A) 

 

 
Current Absolute Error (IAE%) matrics 

 V (V) I (A) 
Proposed 
Method 

 
 

Proposed 
method 

GOFPANM 
[20] 

MPCO
A [18] 

GA 
[22] 

PS [19] NR [8] SA [12] 

1 0.1248 1.0315 1.028  0.340467 0.233213488 0.119 0.988 0.207 0.213 0.006 

2 1.8093 1.03 1.0269  0.301879 0.253065992 0.168 0.845 0.294 0.367 0.062 

3 3.3511 1.026 1.0258  0.019497 0.029248318 0.037 0.966 0.123 0.258 0.137 
4 4.7622 1.022 1.0219  0.009786 0.2050581 0.247 1.099 0.055 0.138 0.341 

5 6.0538 1.018 1.02  0.196078 0.42062017 0.443 1.224 0.222 0.023 0.531 
6 7.2364 1.0155 1.0177  0.216174 0.431414845 0.440 1.155 0.196 0.099 0.521 

7 8.3189 1.014 1.0142  0.01972 0.226311129 0.223 0.876 0.041 0.383 0.292 

8 9.3097 1.01 1.0099  0.009902 0.049480455 0.029 0.626 0.250 0.636 0.082 
9 10.2163 1.0035 1.0006  0.289826 0.289826104 0.307 0.237 0.600 1.028 0.281 

10 11.0449 0.988 0.9855  0.253678 0.345317896 0.368 0.135 0.668 1.139 0.374 

11 11.8018 0.963 0.9609  0.218545 0.354314298 0.371 0.102 0.675 1.189 0.418 
12 12.4929 0.9255 0.9237  0.194868 0.249133449 0.288 0.174 0.587 1.144 0.378 

13 13.1231 0.8725 0.8712  0.149219 0.068720651 0.008 0.495 0.269 0.867 0.115 

14 13.6983 0.8075 0.8023  0.648137 0.061881188 0.035 0.505 0.286 0.919 0.188 
15 14.2221 0.7265 0.7227  0.525806 0.137457045 0.194 0.868 0.016 0.648 0.061 

16 14.6995 0.6345 0.6339  0.094652 0.188768287 0.309 1.154 0.198 0.487 0.192 

17 15.1346 0.5345 0.5342  0.056159 0.037404152 0.226 1.240 0.115 0.575 0.067 
18 15.5311 0.4275 0.427  0.117096 0.11682243 0.311 1.666 0.270 0.405 0.187 

19 15.8929 0.3185 0.3184  0.031407 -0.031407035 0.057 1.738 0.122 0.735 0.232 

20 16.2229 0.2085 0.2083  0.096015 0.143678161 0.302 2.030 0.775 1.222 0.906 
21 16.5241 0.101 0.1009  0.099108 0.296150049 0.990 0.520 5.153 5.002 5.287 

Total IAE%    3.888021 4.10647917 5.481 18.648 11.13 21.63 5.775 

MAE (%)    0.185144 0.195546 0.261 0.888 0.530 1.030 0.275 
MAE of 3 points near MPP (%)  0.1875 0.22405 0.2223 0.257 0.510 1.0666 0.3036 

 

 

5. CONCLUSION 

The present investigation has considered MOO algorithm NSGA-II for estimating the electrical 

model parameters of solar PV modules. In comparison to the existing methods such as NR, GA, PSO, PS, 

SA, MPCOA, and GOFPANM, the proposed NSGA-II method outperformed and provided a better P-V and 

I-V curve, as well as a lesser value of ARPE and MAE. Henceforth, it is inferred that the MOO-based 

approach can be recommended as one of the most accurate tools for the parameters estimation of solar PV. 
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